7.E: Integration (Exercises)
- Page ID
- 3459
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)These are homework exercises to accompany David Guichard's "General Calculus" Textmap. Complementary General calculus exercises can be found for other Textmaps and can be accessed here.
7.1: Two Examples
Ex 7.1.1Suppose an object moves in a straight line so that its speed at time $t$ is given by $v(t)=2t+2$, and that at $t=1$ the object is at position 5. Find the position of the object at $t=2$. (answer)
Ex 7.1.2Suppose an object moves in a straight line so that its speed at time $t$ is given by $\ds v(t)=t^2+2$, and that at $t=0$ the object is at position 5. Find the position of the object at $t=2$. (answer)
Ex 7.1.3By a method similar to that in example 7.1.2, find the area under $y=2x$ between $x=0$ and any positive value for $x$. (answer)
Ex 7.1.4By a method similar to that in example 7.1.2, find the area under $y=4x$ between $x=0$ and any positive value for $x$. (answer)
Ex 7.1.5By a method similar to that in example 7.1.2, find the area under $y=4x$ between $x=2$ and any positive value for $x$ bigger than 2. (answer)
Ex 7.1.6By a method similar to that in example 7.1.2, find the area under $y=4x$ between any two positive values for $x$, say $a < b$. (answer)
Ex 7.1.7Let $\ds f(x)=x^2+3x+2$. Approximate the area under the curve between $x=0$ and $x=2$ using 4 rectangles and also using 8 rectangles. (answer)
Ex 7.1.8Let $\ds f(x)=x^2-2x+3$. Approximate the area under the curve between $x=1$ and $x=3$ using 4 rectangles. (answer)
7.2: The Fundamental Theorem of Calculus
Find the antiderivatives of the functions:
Ex 7.2.1 \( 8\sqrt{x}\) (answer)
Ex 7.2.2 \( 3t^2+1\) (answer)
Ex 7.2.3 \( 4/\sqrt{x}\) (answer)
Ex 7.2.4 \( 2/z^2\) (answer)
Ex 7.2.5 \( 7s^{-1}\) (answer)
Ex 7.2.6 \( (5x+1)^2\) (answer)
Ex 7.2.7 \( (x-6)^2\) (answer)
Ex 7.2.8 \( x^{3/2}\) (answer)
Ex 7.2.9 \( {2\over x\sqrt x}\) (answer)
Ex 7.2.10 \( |2t-4|\) (answer)
Compute the values of the integrals:
Ex 7.2.11 \( \int_1^4 t^2+3t\,dt\) (answer)
Ex 7.2.12 \( \int_0^\pi \sin t\,dt\) (answer)
Ex 7.2.13 \( \int_1^{10} {1\over x}\,dx\) (answer)
Ex 7.2.14 \( \int_0^5 e^x\,dx\) (answer)
Ex 7.2.15 \( \int_0^3 x^3\,dx\) (answer)
Ex 7.2.16 \( \int_1^2 x^5\,dx\) (answer)
Ex 7.2.17Find the derivative of \( G(x)=\int_1^x t^2-3t\,dt\) (answer)
Ex 7.2.18Find the derivative of \( G(x)=\int_1^{x^2} t^2-3t\,dt\) (answer)
Ex 7.2.19Find the derivative of \( G(x)=\int_1^x e^{t^2}\,dt\) (answer)
Ex 7.2.20Find the derivative of \( G(x)=\int_1^{x^2} e^{t^2}\,dt\) (answer)
Ex 7.2.21Find the derivative of \( G(x)=\int_1^x \tan(t^2)\,dt\) (answer)
Ex 7.2.22Find the derivative of \( G(x)=\int_1^{x^2} \tan(t^2)\,dt\) (answer)
7.3: Some Properties of Integrals
Ex 7.3.1An object moves so that its velocity at time $t$ is $v(t)=-9.8t+20$ m/s. Describe the motion of the object between $t=0$ and $t=5$, find the total distance traveled by the object during that time, and find the net distance traveled. (answer)
Ex 7.3.2An object moves so that its velocity at time $t$ is $v(t)=\sin t$. Set up and evaluate a single definite integral to compute the net distance traveled between $t=0$ and $t=2\pi$. (answer)
Ex 7.3.3An object moves so that its velocity at time $t$ is $v(t)=1+2\sin t$ m/s. Find the net distance traveled by the object between $t=0$ and $t=2\pi$, and find the total distance traveled during the same period. (answer)
Ex 7.3.4Consider the function $f(x)=(x+2)(x+1)(x-1)(x-2)$ on $[-2,2]$. Find the total area between the curve and the $x$-axis (measuring all area as positive). (answer)
Ex 7.3.5Consider the function $\ds f(x)=x^2-3x+2$ on $[0,4]$. Find the total area between the curve and the $x$-axis (measuring all area as positive). (answer)
Ex 7.3.6Evaluate the three integrals: $$ A=\int_0^3 (-x^2+9)\,dx\qquad B=\int_0^{4} (-x^2+9)\,dx\qquad C=\int_{4}^3 (-x^2+9)\,dx, $$ and verify that $A=B+C$. (answer)
Contributors