Skip to main content
Mathematics LibreTexts

4.4: Summary

  • Page ID
    121103
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. The derivative is a linear operation, which means that the derivative can be distributed over a sum of functions or exchanged with a constant multiplying a function. The derivative of a polynomial is thus a sum of derivatives of power functions.
    2. A "second derivatives" is the derivate of a derivative.
    3. Antiderivatives reverse the process of differentiation. Antidifferentiation is, however, not unique. Given a function \(f(x)\), we can only determine its antiderivative up to some arbitrary constant.
    4. The product, quotient and chain rules are,

    \[\begin{gathered} {[f(x) g(x)]^{\prime}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x),} \\ {\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{[g(x)]^{2}}} \\ {[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x) .} \end{gathered} \nonumber \]

    These allow us to compute derivatives of functions made up of simpler components for which we have already established differentiation rules.

    1. Given the graph of a function, we can use qualitative features - signs, zeros, peaks, valleys, and tangent lines slopes to sketch both its derivatives and antiderivatives.
    2. The applications examined in this chapter included:
      1. energy loss and Earth’s temperature; and
      2. position, velocity and acceleration of an object.

    In particular, these are related via differentiation and antidifferentiation. Given an object’s position \(y(t)\), its velocity is \(v(t)=y^{\prime}(t)\) and its acceleration is \(a(t)=v^{\prime}(t)=y^{\prime \prime}(t)\).

    Quick Concept Checks
    1. Which of the following operations are linear? (a) division (b) exponentiation (c) composition (d) squaring
    2. Why are the product and chain rules useful?
    3. Suppose an object has acceleration \(a(t)=10 \mathrm{~m} / \mathrm{s}^{2}\). What can you say about its: (a) accelleration at \(t=5 \mathrm{~s}\) ? (d) position at time \(t ?\) (b) velocity at time \(t\) ? (e) position at time \(t=5 \mathrm{~s}\) ? (c) velocity at time \(t=5 \mathrm{~s}\) ?
    4. Consider the following graph which describes the position \(y\) of an object at time \(t\) :

    clipboard_efadd842a5ea85edb0d708455999300ac.png

    Where is the object’s velocity minimal? Maximal?


    This page titled 4.4: Summary is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Leah Edelstein-Keshet via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.