Skip to main content
Mathematics LibreTexts

6.4: Summary

  • Page ID
    121115
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. We can improve the accuracy of a sketch of a function \(f(x)\) by examining its derivatives. For example, if \(f^{\prime}(x)>0\) then \(f(x)\) is increasing, and if \(f^{\prime}(x)<0\), then \(f(x)\) is decreasing. Further, if \(f^{\prime \prime}(x)>0\) then this corresponds to \(f^{\prime}(x)\) increasing, which means \(f(x)\) is concave up. Similarly, \(f^{\prime \prime}(x)<0\) corresponds to \(f(x)\) being concave down.
    2. If \(f^{\prime \prime}\left(x_{0}\right)=0\) and \(f^{\prime \prime}(x)\) changes sign at \(x_{0}\), then \(x_{0}\) is a point of inflection of \(f(x)\) : a point where its concavity changes.
    3. If \(f^{\prime}\left(x_{0}\right)=0\), then \(x_{0}\) is a critical point of the function \(f(x)\). A critical point needs to be further tested to determine whether it is a local minimum, local maximum or neither.
    4. Given a critical point \(x_{0}\) (where \(f^{\prime}\left(x_{0}\right)=0\) ), the first derivative test examines the sign of \(f^{\prime}(x)\) near \(x_{0}\). If the sign pattern of \(f^{\prime}(x)\) is \(+, 0,-\) (from left to right as we cross \(x_{0}\) ), then \(x_{0}\) is a local maximum. If the sign pattern is \(-, 0,+\), then \(x_{0}\) is a local minimum.
    5. Given a critical point \(x_{0}\) (where \(f^{\prime}\left(x_{0}\right)=0\) ), the second derivative test examines the sign of \(f^{\prime \prime}\left(x_{0}\right)\). If \(f^{\prime \prime}\left(x_{0}\right)<0\), then \(x_{0}\) is a local maximum. If \(f^{\prime \prime}\left(x_{0}\right)>0\), then \(x_{0}\) is a local minimum. If \(f^{\prime \prime}\left(x_{0}\right)=0\), the second derivative test is inconclusive.
    6. A global maximum and minimum can only be identified after comparing the values of the function at all critical points and endpoints of the interval. (Remark: For discontinuous or non-smooth functions, we must also examine values of \(f\) at points of discontinuity and cusps, not discussed in this chapter).
    Quick Concept Checks
    1. Consider the function depicted below:

    clipboard_e3dd66659a34f44699fd833f2eeb76750.png

    1. Circle all zeros.
    2. Where are the local maxima?
    3. How many local minima are there?
    4. Where does the function change sign?
    1. Draw a graph to justify that if \(f^{\prime}(x)>0\), then \(f(x)\) is increasing.
    2. Where does the function \(f(a)=a^{3}(a-\pi)(a+\rho)^{5}(a-2)^{2}\) change signs?
    3. Suppose you are given that \(\gamma\) is a critical point of some function \(g\). What would you ask to learn more about the shape of \(g\) ?

    This page titled 6.4: Summary is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Leah Edelstein-Keshet via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.