Skip to main content
Mathematics LibreTexts

13.4: Summary

  • Page ID
    121154
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. A differential equation of the form \(\alpha \frac{d y}{d t}+\beta y+\gamma=0\) is linear (and "first order"). We encountered several examples of nonlinear DEs in this chapter.
    2. A (possibly nonlinear) differential equation \(\frac{d y}{d t}=f(y)\) can be analyzed qualitatively by observing where \(f(y)\) is positive, negative or zero.
    3. A slope field (or "direction field") is a collection of tangent vectors for solutions to a differential equation. Slope fields can be sketched from \(f(y)\) without the need to solve the differential equation.
    4. A solution curve drawn in a slope field corresponds to a single solution to a differential equation, with some initial \(y_{0}\) value given.
    5. A state space (or "phase line" diagram) for the differential equation is a \(y\) axis, together with arrows describing the flow (increasing/decreasing/stationary) along that axis. It can be obtained from a sketch of \(f(y)\).
    6. A steady state is stable if nearby states get closer. A steady state is unstable if nearby states get further away with time.
    7. Creating/interpreting slope field and state space diagrams is helpful in understanding the behavior of solutions to differential equations.
    8. Applications considered in this chapter included:
      1. the logistic equations for population growth (a nonlinear differential equation, scaling, steady state and slope field demonstration);
      2. the Law of Mass Action (a nonlinear differential equation);
      3. a cooling object (state space and phase line diagram demonstration); and
      4. disease spread model (an extensive exposition on qualitative differential equation methods).
    Quick Concept Checks
    1. Why is it helpful to rescale an equation?
    2. Identify which of the following differential equations are linear:
      1. \(5 \frac{d y}{d t}-y=-0.5\)
      2. \(\left(\frac{d y}{d t}\right)^{2}+y+1=0\)
      3. \(\frac{d y}{d x}+\pi y+\rho=3\)
      4. \(\frac{d x}{d t}+x+2=-3 x\)
    3. Consider the following slope field:

    clipboard_e5f0ac0874bbd4f59145e058cd43c63b9.png

    1. Where is \(y\) decreasing?
    2. What is \(y\) approaching?
    1. Circle the stable steady states in the following state space diagram

    This page titled 13.4: Summary is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Leah Edelstein-Keshet via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.