2.9: Homework- Algebraic Limits
- Page ID
- 88633
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
- Factor the following polynomials.
- \(x^2 - 5x + 6\)
\((x-2)(x-3)\)ans
- \(x^2 + 2x - 63\)
\((x-7)(x+9)\)ans
- \(x^2 - 4xh + 4h^2\)
\((x-2h)^2\)ans
- \(x^2 - 5x + 6\)
- If you’re doing a limit with a continuous function, like \(\lim_{x \to 3} 7x - 1\), how can you quickly solve this limit problem?
Plug it in!ans
- Compute the following limits algebraically.
- \(\lim_{x \to 5} 2x^2 - 7x\)
\(15\)ans
- \(\lim_{x \to 2} \frac{(x-5)(x-2)}{x-2}\)
\(-3\)ans
- \(\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3}\)
\(0\)ans
- \(\lim_{x \to -4} \frac{x^2 + 3x - 4}{x+4}\)
\(-5\)ans
- \(\lim_{x \to 2} \frac{x^3 - 6x^2 + 8x}{x-2}\)
\(-4\)ans
- \(\lim_{x \to w} x^2 + 5xw - w^2\)
\(5w^2\)ans
- \(\lim_{x \to h} \frac{x^2 - h^2}{x-h}\)
\(2h\)ans
- \(\lim_{x \to 5} 2x^2 - 7x\)