7.4: Homework- u-substitution
( \newcommand{\kernel}{\mathrm{null}\,}\)
- As a review of the chain rule from derivatives, find ddxe−x2+1.
2xex2+1ans
- Read through section 6A again and then read through section 6B.
- Watch the Khan Academy video u-substitution.
- Compute the following indefinite integral using the method of u-substitution.
∫(5x4+2x)ex5+x2dx
ex5+x2+Cans - Watch another example of u-substitution: u-substitution 2.
- Compute the following indefinite integral using the method of u-substitution.
∫2xx2−5dx
ln(x2−5)+Cans - Reread the part about the chain rule shortcut for u-substitution in chapter 6 of the online notes, and reread Example 6B.2. Then try the following problems.
- ∫e−3xdx.
1−3e−3x+Cans
- ∫(12x−1)4dx
.4(12x−1)5+Cans
.
- ∫20(5x−3)3dx.
116ans
- ∫17x−2dx
17ln(7x−2)+Cans
- ∫1√0.5x−1dx
4√0.5x−1+Cans
- ∫e−3xdx.
- Try some more u-substitution integrals.
- ∫(8x3)(x4+1)2dx
- We see that u=x4+1 in this case.
- We see dudx=4x3, so dx=14x3du.
- We have
=∫(8x3)u214x3du=∫8u214du=2∫u2du
- Integrating we have
2∫u2du=2(13u3)+C=23u3+C
- Substitution of u=x4+1 yields
23(x4+1)3+C
ans - ∫(x4+1)2(8x3)dx
This is exactly the same as the previous problem, just written a different way. No need to redo work.ans
- ∫(3x2−1)ex3−xdx
- We see that u=x3−x in this case.
- We see dudx=3x2−1, so dx=13x2−1du.
- We have
=∫(3x2−1)eu13x2−1du=∫eudu
- Integrating we have
∫eudu=eu+C
- Substitution of u=x3−x yields
ex3−x+C
ans - ∫(x2−13)ex3−xdx
13ex3−x+Cans
- ∫(ex+x)5(ex+1)dx
16(ex+x)6+Cans
- ∫2xx2−1dx
ln(x2−1)+Cans
- ∫ex√ex+1dx
ans
- ∫sin(x)cos(x)dx
−ln(cos(x))+Cans
- ∫√ln(x)xdx
ans
- ∫x(x2−5)3dx
- We see that u=x2−5 in this case.
- We see dudx=2x, so dx=12xdu.
- We have
=∫xu312xdu=∫12u3du=∫12u−3du
- Integrating we have
∫12u−3du=−14u−2+C
- Substitution of u=x2−5 yields
−14(x2−5)−2+C
ans - ∫cos(x)√sin(x)+1dx
2√sin(x)+1+Cans
- ∫1x(2ln(x)+1)4dx.
−16(2ln(x)+1)3+Cans
- ∫(e5x+1)9(e5x)dx.
12(e5x+1)10+Cans
- ∫(8x3)(x4+1)2dx