Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.4: Homework- u-substitution

( \newcommand{\kernel}{\mathrm{null}\,}\)

  1. As a review of the chain rule from derivatives, find ddxex2+1.
    2xex2+1
    ans
  2. Read through section 6A again and then read through section 6B.
  3. Watch the Khan Academy video u-substitution.
  4. Compute the following indefinite integral using the method of u-substitution.

    (5x4+2x)ex5+x2dx

    ex5+x2+C
    ans
  5. Watch another example of u-substitution: u-substitution 2.
  6. Compute the following indefinite integral using the method of u-substitution.

    2xx25dx

    ln(x25)+C
    ans
  7. Reread the part about the chain rule shortcut for u-substitution in chapter 6 of the online notes, and reread Example 6B.2. Then try the following problems.
    1. e3xdx.
      13e3x+C
      ans
    2. (12x1)4dx
      .4(12x1)5+C
      ans

      .

    3. 20(5x3)3dx.
      116
      ans
    4. 17x2dx
      17ln(7x2)+C
      ans
    5. 10.5x1dx
      40.5x1+C
      ans
  8. Try some more u-substitution integrals.
    1. (8x3)(x4+1)2dx
      1. We see that u=x4+1 in this case.
      2. We see dudx=4x3, so dx=14x3du.
      3. We have

        =(8x3)u214x3du=8u214du=2u2du

      4. Integrating we have

        2u2du=2(13u3)+C=23u3+C

      5. Substitution of u=x4+1 yields

        23(x4+1)3+C

      ans
    2. (x4+1)2(8x3)dx
      This is exactly the same as the previous problem, just written a different way. No need to redo work.
      ans
    3. (3x21)ex3xdx
      1. We see that u=x3x in this case.
      2. We see dudx=3x21, so dx=13x21du.
      3. We have

        =(3x21)eu13x21du=eudu

      4. Integrating we have

        eudu=eu+C

      5. Substitution of u=x3x yields

        ex3x+C

      ans
    4. (x213)ex3xdx
      13ex3x+C
      ans
    5. (ex+x)5(ex+1)dx
      16(ex+x)6+C
      ans
    6. 2xx21dx
      ln(x21)+C
      ans
    7. exex+1dx
      ans
    8. sin(x)cos(x)dx
      ln(cos(x))+C
      ans
    9. ln(x)xdx
      ans
    10. x(x25)3dx
      1. We see that u=x25 in this case.
      2. We see dudx=2x, so dx=12xdu.
      3. We have

        =xu312xdu=12u3du=12u3du

      4. Integrating we have

        12u3du=14u2+C

      5. Substitution of u=x25 yields

        14(x25)2+C

      ans
    11. cos(x)sin(x)+1dx
      2sin(x)+1+C
      ans
    12. 1x(2ln(x)+1)4dx.
      16(2ln(x)+1)3+C
      ans
    13. (e5x+1)9(e5x)dx.
      12(e5x+1)10+C
      ans

This page titled 7.4: Homework- u-substitution is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?