4.4: Inverse Functions
- Page ID
- 528
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)An inverse function is a function that undoes another function: If an input \(x\) into the function \(f\) produces an output \(y\), then putting \(y\) into the inverse function \(g\) produces the output \(x\), and vice versa.
Let \(f(x)\) be a 1-1 function then \(g(x)\) is an inverse function of \(f(x)\) if
\[ f(g(x)) = g(f(x)) = x. \nonumber \]
For
\[ f(x) = 2x - 1 \nonumber \]
\[ f^{ -1}(x) = \dfrac{1}{2} x +\dfrac{1}{2} \nonumber \]
since
\[ f(f^{ -1}(x) ) = 2 \left( \dfrac{1}{2} x +\dfrac{1}{2} \right) - 1 = x \nonumber \]
and
\[ f ^{-1}(f(x)) = \dfrac{1}{2} [2x - 1] + \dfrac{1}{2} = x. \nonumber \]
The Horizontal Line Test and Roll's Theorem
Note that if \(f(x)\) is differentiable and the horizontal line test fails then
\[ f(a) = f(b) \nonumber \]
and Rolls theorem implies that there is a \(c\) such that
\[ f '(c) = 0. \nonumber \]
A partial converse is also true:
If \(f\) is differentiable and \(f '(x)\) is always non-negative (or always non-positive) then \(f(x)\) has an inverse.
\[ f(x) = x^3 + x - 4 \nonumber \]
has an inverse since
\[f'(x) = 3x^2 + 1 \nonumber \]
which is always positive.
Continuity and Differentiability of the Inverse Function
- \(f\) continuous implies that \(f^{ -1}\) is continuous.
- \(f\) increasing implies that \(f^{ -1}\) is increasing.
- \(f\) decreasing implies that \(f^{ -1}\) is decreasing.
- \(f\) differentiable at \(c\) and \(f '(c) \neq 0\) implies that \(f^{ -1}\) is differentiable at \(f (c)\).
- If \(g(x)\) is the inverse of the differentiable \(f(x)\) then
\[ g'(x) = \dfrac{1}{f '(g(x))}. \lable{Rolls} \nonumber \]
if \(f '(g(x)) \neq 0\).
Since
\[ f (g(x)) = x \nonumber \]
we differentiate implicitly:
\[\dfrac{d}{dx} f(g(x)) = \dfrac{d}{dx} x.\nonumber \]
Using the chain rule
\[ y =f(u), u = g(x)\nonumber \]
\[ \begin{align*} \dfrac{dy}{x} &= \dfrac{dy}{dy} \dfrac{du}{dx} \nonumber \\[4pt] &= f '(u) g'(x) = f '(g(x)) g'(x). \end{align*} \]
So that
\[ f '(g(x)) g'(x) = 1. \nonumber \]
Dividing, we get Equation \ref{Rolls}:
\[g'(x) = \dfrac{1}{f'(g(x))}.\nonumber \]
\(\square\)
For \(x > 0\), let
\[ f(x) = x^2\nonumber \]
and
\[ g(x) = \sqrt{x}\nonumber \]
be its inverse, then
\[ g'(x) = \dfrac{1}{2\sqrt{x}}.\nonumber \]
Note that
\[ \dfrac{d}{dx} \sqrt{x} = \dfrac{d}{dx} x^{\frac{1}{2}} = \dfrac{1}{2} x^{-\frac{1}{2}} = \dfrac{1}{2\sqrt{x}}.\nonumber \]
1. Let
\[ f(x) = x^3 + x - 4.\nonumber \]
Find
\[ \dfrac{d}{dx} f^{-1}(-4). \nonumber \]
2. Let
\[f(x) =\int_2^x \dfrac{1}{1+x^3} dx\nonumber \]
Find
\[ \dfrac{d}{dx} f^{-1}(0). \nonumber \]
Outside Links
- http://en.Wikipedia.org/wiki/Rolle%27s_theorem
- Larry Green (Lake Tahoe Community College)
Integrated by Justin Marshall.