$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 4.5: The Derivative and Integral of the Exponential Function

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

## Definitions and Properties of the Exponential Function

The exponential function,

$y=e^x$

is defined as the inverse of

$\ln x.$

Therefore

$\ln(e^x) = x$

and

$e^{\ln x} =x.$

Recall that

1. $e^ae^b=e^{a+b}$

2. $\dfrac{e^a}{e^b}=e^{(a-b)}.$

Proof of 2:

\begin{align} \ln\Big[\dfrac{e^a}{e^b}\Big] &= \ln[e^a]-\ln[e^b] \\ &= a-b \\ &= \ln[e^{a-b}] \end{align}

since $$\ln(x)$$ is 1-1, the property is proven.

## The Derivative of the Exponential

We will use the derivative of the inverse theorem to find the derivative of the exponential. The derivative of the inverse theorem says that if $$f$$ and $$g$$ are inverses, then

$g'(x)=\dfrac{1}{f'(g(x))}.$

Let

$f(x)=\ln(x)$

then

$f'(x)=\dfrac{1}{x}$

so that

$f'(g(x))=\dfrac{1}{e^x}.$

Hence

$g'(x)=e^x$

Theorem:

If

$f(x)=e^x$

then

$f'(x)=f(x)=e^x$

$(e^{2x})'=(e^u)(2)=2e^{2x}.$

\begin{align} (xe^x)'&=(x)'(e^x)+x(e^x)' \\ &= e^x+xe^x. \end{align}

$\dfrac{e^x}{x^2}.$

$\int e^x \; dx = e^x +C$

\begin{align} \int e^u \; du &= e^u +C \\ &= e^{e^x}+C. \end{align}

$\int \dfrac{e^x}{1-e^x} \; dx.$

Larry Green (Lake Tahoe Community College)

• Integrated by Justin Marshall.