Skip to main content
Mathematics LibreTexts

1.9: Partial Derivatives

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Definition of a Partial Derivative

    Let \(f(x,y)\) be a function of two variables. Then we define the partial derivatives as:

    Definition: Partial Derivative

    \[ f_x = \dfrac{\partial f}{\partial x} = \lim_{h\to{0}} \dfrac{f(x+h,y)-f(x,y)}{h} \]

    \[ f_y = \dfrac{\partial f}{\partial y} = \lim_{h\to{0}} \dfrac{f(x,y+h)-f(x,y)}{h} \]

    if these limits exist.

    Algebraically, we can think of the partial derivative of a function with respect to \(x\) as the derivative of the function with \(y\) held constant. Geometrically, the derivative with respect to \(x\) at a point \(P\) represents the slope of the curve that passes through \(P\) whose projection onto the \(xy\) plane is a horizontal line (if you travel due East, how steep are you climbing?)

    Example \(\PageIndex{1}\)


    \[ f(x,y) = 2x + 3y \nonumber\]


    \[\begin{align*} \dfrac{\partial f}{ \partial } &= \lim_{h\to{0}}\dfrac{(2(x+h)+3y) - (2x+3y)}{h} \nonumber \\[4pt] &= \lim_{h\to{0}} \dfrac{2x+2h+3y-2x-3y}{h} \nonumber \\[4pt] &= \lim_{h\to{0}} \dfrac{2h}{h} =2 . \end{align*} \]

    We also use the notation \(f_x\) and \(f_y\) for the partial derivatives with respect to \(x\) and \(y\) respectively.

    Exercise \(\PageIndex{1}\)

    Find \(f_y\) for the function from the example above.

    Finding Partial Derivatives the Easy Way

    Since a partial derivative with respect to \(x\) is a derivative with the rest of the variables held constant, we can find the partial derivative by taking the regular derivative considering the rest of the variables as constants.

    Example \(\PageIndex{2}\)


    \[ f(x,y) = 3xy^2 - 2x^2y \nonumber \]


    \[ f_x = 3y^2 - 4xy \nonumber\]


    \[ f_y = 6xy - 2x^2. \nonumber\]

    Exercises \(\PageIndex{2}\)

    Find both partial derivatives for

    1. \(f(x,y) = xy \sin x \)
    2. \( f(x,y) = \dfrac{ x + y}{ x - y}\).

    Higher Order Partials

    Just as with function of one variable, we can define second derivatives for functions of two variables. For functions of two variables, we have four types: \( f_{xx}\), \(f_{xy}\), \(f_{yx}\), and \(f_{yy}\).

    Example \(\PageIndex{3}\)


    \[f(x,y) = ye^x\nonumber\]


    \[f_x = ye^x \nonumber\]


    \[f_y=e^x. \nonumber\]

    Now taking the partials of each of these we get:

    \[f_{xx}=ye^x \;\;\; f_{xy}=e^x \;\;\; \text{and} \;\;\; f_{yy}=0 . \nonumber\]

    Notice that

    \[ f_{x,y} = f_{yx}.\nonumber\]


    Let \(f(x,y)\) be a function with continuous second order derivatives, then

    \[f_{xy} = f_{yx}. \]

    Functions of More Than Two Variables

    Suppose that

    \[ f(x,y,z) = xy - 2yz \nonumber\]

    is a function of three variables, then we can define the partial derivatives in much the same way as we defined the partial derivatives for three variables.

    We have

    \[f_x=y \;\;\; f_y=x-2z \;\;\; \text{and} \;\;\; f_z=-2y . \]

    Example \(\PageIndex{4}\): The Heat Equation

    Suppose that a building has a door open during a snowy day. It can be shown that the equation

    \[ H_t = c^2H_{xx} \nonumber \]

    models this situation where \(H\) is the heat of the room at the point \(x\) feet away from the door at time \(t\). Show that

    \[ H = e^{-t} \cos(\frac{x}{c}) \nonumber\]

    satisfies this differential equation.


    We have

    \[H_t = -e^{-t} \cos (\dfrac{x}{c}) \nonumber\]

    \[H_x = -\dfrac{1}{c} e^{-t} \sin(\frac{x}{c}) \nonumber\]

    \[H_{xx} = -\dfrac{1}{c^2} e^{-t} \cos(\dfrac{x}{c}) . \nonumber\]

    So that

    \[c^2 H_{xx}= -e^{-t} \cos (\dfrac{x}{c}) . \nonumber\]

    And the result follows.

    Contributors and Attributions

    This page titled 1.9: Partial Derivatives is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?