Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.1.E: Introduction to Rⁿ (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 1.1.E.1

Let x=(1,2),y=(2,3), and z=(2,4). For each of the following, plot the points x,y,z, and the indicated point w.
(a) w=x+y
(b) w=2xy
(c) w=z2x
(d) w=3x+2yz

Exercise 1.1.E.2

Let x=(1,3,1),y=(3,2,1), and z=(2,4,2). Compute each of the following.
(a) x+y
(b) xz+3y
(c) 3z2y
(d) 3x+4z

Answer

(a) (4,5,0)

(b) (12,5,4)

(c) (-12,8,-8)

(d) (-11,7,-5)

Exercise 1.1.E.3

Let x=(1,1,2,3),y=(2,3,1,2), and z=(2,1,3,4). Compute each of the following.
(a) x2z
(b) y+x3z
(c) 3yx+4z
(d) x+3z4y

Exercise 1.1.E.4

Let x=(1,2) and y=(2,3). Compute each of the following.
(a) x
(b) xy
(c) 3x
(d) 4y

Exercise 1.1.E.5

Let x=(2,3,1),y=(2,1,5), and z=(3,1,2). Compute each of the following.
(a) x
(b) x+2y
(c) 5x
(d) x+y+z

Answer

(a) 14

(b) 118

(c) 514

(d) 36

Exercise 1.1.E.6

Find the distances between the following pairs of points.
(a) x=(3,2),y=(1,3)
(b) x=(1,2,1),y=(2,1,3)
(c) x=(4,2,1,1),y=(1,3,2,2)
(d) z=(3,3,0),y=(1,2,5)
(e) w=(1,2,4,2,3,1),u=(3,2,1,3,2,1)

Answer

(a) 17

(b) 22

(c) 23

(d) 66

(e) 19

Exercise 1.1.E.7

Draw a picture of the following sets of points in R2.
(a) S1((1,2),1)
(b) B2((1,2),1)
(c) ¯B2((1,2),1)

Exercise 1.1.E.8

Draw a picture of the following sets of points in R.
(a) S0(1,3)
(b) B1(1,3)
(c) ¯B1(1,3)

Exercise 1.1.E.9

Describe the differences between S2((1,2,1),1),B3((1,2,1),1), and ¯B3((1,2,1),1) in R3.

Exercise 1.1.E.10

Is the point (1,4,5) in the the open ball B3((1,2,3),4)?

Exercise 1.1.E.11

Is the point (3,2,1,4,1) in the open ball B5((1,2,4,2,3),3)?

Answer

No

Exercise 1.1.E.12

Find the length and direction of the following vectors.
(a) x=(2,1)
(b) z=(1,1,1)
(c) x=(1,2,3)
(d) w=(1,1,2,3)

Answer

(a) x=5, Direction: u=15(2,1)

(b) z=3, Direction: u=13(1,1,1)

(c) x=14, Direction: u=114(1,2,3)

(d) w=15, Direction: u=115(1,1,2,3)

Exercise 1.1.E.13

Let x=(1,3),y=(4,1), and z=(2,1). Plot x,y, and z. Also, show how to obtain each of the following geometrically.
(a) w=x+y
(b) w=yx
(c) w=3z
(d) w=2z
(e) w=12z
(f) w=x+y+z
(g) w=x+3z
(h) w=x14y

Exercise 1.1.E.14

Suppose x=(x1,x2,,xn),y=(y1,y2,,yn), and z=(z1,z2,,zn) are vectors in Rn and a,b, and c are scalars. Verify the following.
(a) x+y=y+x
(b) x+(y+z)=(x+y)+z
(c) a(x+y)=ax+ay
(d) (a+b)x=ax+bx
(e) a(bx)=(ab)x
(f) x+0=x
(g) 1x=x
(h) x+(x)=0, where x=1x

Exercise 1.1.E.15

Let u=(1,1) and v=(1,1) be vectors in R2
(a) Let x=(2,1). Find scalars a and b such that x=au+bv. Are a and b unique?
(b) Let x=(x,y) be an arbitrary vector in R2. Show that there exist unique scalars a and b such that x=au+bv.
(c) The result in (b) shows that u and v form a basis for R2 which is different from the standard basis of e1 and e2. Show that the vectors u=(1,1) and w=(1,1) do not form a basis for R2. (Hint: Show that there do not exist scalars a and b such that x=au+w when x=(2,1).)

Answer

(a) a=32,b=12; Yes, a and b are unique.

(b) a=x+y2,b=yx2


This page titled 1.1.E: Introduction to Rⁿ (Exercises) is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?