1.1.E: Introduction to Rⁿ (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercise 1.1.E.1
Let x=(1,2),y=(2,3), and z=(−2,4). For each of the following, plot the points x,y,z, and the indicated point w.
(a) w=x+y
(b) w=2x−y
(c) w=z−2x
(d) w=3x+2y−z
Exercise 1.1.E.2
Let x=(1,3,−1),y=(3,2,1), and z=(−2,4,−2). Compute each of the following.
(a) x+y
(b) x−z+3y
(c) 3z−2y
(d) −3x+4z
- Answer
-
(a) (4,5,0)
(b) (12,5,4)
(c) (-12,8,-8)
(d) (-11,7,-5)
Exercise 1.1.E.3
Let x=(1,−1,2,3),y=(−2,3,1,−2), and z=(2,1,3,−4). Compute each of the following.
(a) x−2z
(b) y+x−3z
(c) −3y−x+4z
(d) x+3z−4y
Exercise 1.1.E.4
Let x=(1,2) and y=(−2,3). Compute each of the following.
(a) ‖x‖
(b) ‖x−y‖
(c) ‖3x‖
(d) ‖−4y‖
Exercise 1.1.E.5
Let x=(2,3,−1),y=(2,−1,5), and z=(3,−1,−2). Compute each of the following.
(a) ‖x‖
(b) ‖x+2y‖
(c) ‖−5x‖
(d) ‖x+y+z‖
- Answer
-
(a) √14
(b) √118
(c) 5√14
(d) 3√6
Exercise 1.1.E.6
Find the distances between the following pairs of points.
(a) x=(3,2),y=(−1,3)
(b) x=(1,2,1),y=(−2,−1,3)
(c) x=(4,2,1,−1),y=(1,3,2,−2)
(d) z=(3,−3,0),y=(−1,2,−5)
(e) w=(1,2,4,−2,3,−1),u=(3,2,1,−3,2,1)
- Answer
-
(a) √17
(b) √22
(c) 2√3
(d) √66
(e) √19
Exercise 1.1.E.7
Draw a picture of the following sets of points in R2.
(a) S1((1,2),1)
(b) B2((1,2),1)
(c) ¯B2((1,2),1)
Exercise 1.1.E.8
Draw a picture of the following sets of points in R.
(a) S0(1,3)
(b) B1(1,3)
(c) ¯B1(1,3)
Exercise 1.1.E.9
Describe the differences between S2((1,2,1),1),B3((1,2,1),1), and ¯B3((1,2,1),1) in R3.
Exercise 1.1.E.10
Is the point (1,4,5) in the the open ball B3((−1,2,3),4)?
Exercise 1.1.E.11
Is the point (3,2,−1,4,1) in the open ball B5((1,2,−4,2,3),3)?
- Answer
-
No
Exercise 1.1.E.12
Find the length and direction of the following vectors.
(a) x=(2,1)
(b) z=(1,1,−1)
(c) x=(−1,2,3)
(d) w=(1,−1,2,−3)
- Answer
-
(a) ‖x‖=√5, Direction: ‖u‖=1√5(2,1)
(b) ‖z‖=√3, Direction: ‖u‖=1√3(1,1,−1)
(c) ‖x‖=√14, Direction: ‖u‖=1√14(−1,2,3)
(d) ‖w‖=√15, Direction: ‖u‖=1√15(1,−1,2,−3)
Exercise 1.1.E.13
Let x=(1,3),y=(4,1), and z=(2,−1). Plot x,y, and z. Also, show how to obtain each of the following geometrically.
(a) w=x+y
(b) w=y−x
(c) w=3z
(d) w=−2z
(e) w=12z
(f) w=x+y+z
(g) w=x+3z
(h) w=x−14y
Exercise 1.1.E.14
Suppose x=(x1,x2,…,xn),y=(y1,y2,…,yn), and z=(z1,z2,…,zn) are vectors in Rn and a,b, and c are scalars. Verify the following.
(a) x+y=y+x
(b) x+(y+z)=(x+y)+z
(c) a(x+y)=ax+ay
(d) (a+b)x=ax+bx
(e) a(bx)=(ab)x
(f) x+0=x
(g) 1x=x
(h) x+(−x)=0, where −x=−1x
Exercise 1.1.E.15
Let u=(1,1) and v=(−1,1) be vectors in R2
(a) Let x=(2,1). Find scalars a and b such that x=au+bv. Are a and b unique?
(b) Let x=(x,y) be an arbitrary vector in R2. Show that there exist unique scalars a and b such that x=au+bv.
(c) The result in (b) shows that u and v form a basis for R2 which is different from the standard basis of e1 and e2. Show that the vectors u=(1,1) and w=(−1,−1) do not form a basis for R2. (Hint: Show that there do not exist scalars a and b such that x=au+w when x=(2,1).)
- Answer
-
(a) a=32,b=−12; Yes, a and b are unique.
(b) a=x+y2,b=y−x2