Skip to main content
Mathematics LibreTexts

3.4.E: Second-Order Approximations (Exercises)

  • Page ID
    78224
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Let \(f(x, y)=x^{3} y^{2}-4 x^{2} e^{-3 y}\). Find the following.

    (a) \(\frac{\partial^{2}}{\partial x \partial y} f(x, y)\)

    (b) \(\frac{\partial^{2}}{\partial y \partial x} f(x, y)\)

    (c) \(\frac{\partial^{2}}{\partial x^{2}} f(x, y)\)

    (d) \(\frac{\partial^{3}}{\partial x \partial y \partial x} f(x, y)\)

    (e) \(\frac{\partial^{3}}{\partial x \partial y^{2}} f(x, y)\)

    (f) \(\frac{\partial^{3}}{\partial y^{3}} f(x, y)\)

    (g) \(f_{y y}(x, y)\)

    (h) \(f_{y x y}(x, y)\)

    Answer

    (a) \(\frac{\partial^{2}}{\partial x \partial y} f(x, y)=6 x^{2}+24 e^{-3 y}\)

    (c) \(\frac{\partial^{2}}{\partial x^{2}} f(x, y)=6 x y^{2}-8 e^{-3 y}\)

    (e) \(\frac{\partial^{3}}{\partial x \partial y^{2}} f(x, y)=6 x^{2}-72 x e^{-3 y}\)

    (g) \(f_{y y}(x, y)=x^{3}-36 x^{2} e^{-3 y}\)

    Exercise \(\PageIndex{2}\)

    Let \(f(x, y, z)=\frac{x y}{x^{2}+y^{2}+z^{2}}\). Find the following.

    (a) \(\frac{\partial^{2}}{\partial z \partial x} f(x, y, z)\)

    (b) \(\frac{\partial^{2}}{\partial y \partial z} f(x, y, z)\)

    (c) \(\frac{\partial^{2}}{\partial z^{2}} f(x, y, z)\)

    (d) \(\frac{\partial^{3}}{\partial x \partial y \partial z} f(x, y, z)\)

    (e) \(f_{z y x}(x, y, z)\)

    (f) \(f_{y y y}(x, y, z)\)

    Answer

    (a) \(\frac{\partial^{2}}{\partial z \partial x} f(x, y, z)=\frac{2 y z\left(3 x^{2}-y^{2}-z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}\)

    (c) \(\frac{\partial^{2}}{\partial z^{2}} f(x, y, z)=\frac{2 x y\left(3 z^{2}-x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}\)

    (e) \(\frac{\partial^{3}}{\partial z \partial y \partial x} f(x, y, z)=\frac{2 z\left(3 x^{4}-18 x^{2} y^{2}+3 y^{4}+2 x^{2} z^{2}+2 y^{2} z^{2}-z^{4}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{4}}\)

    Exercise \(\PageIndex{3}\)

    Find the Hessian of each of the following functions.

    (a) \(f(x, y)=3 x^{2} y-4 x y^{3}\)

    (b) \(g(x, y)=4 e^{-x} \cos (3 y)\)

    (c) \(g(x, y, z)=4 x y^{2} z^{3}\)

    (d) \(f(x, y, z)=-\log \left(x^{2}+y^{2}+z^{2}\right)\)

    Answer

    (a) \(H f(x, y)=\left[\begin{array}{cc}
    6 y & 6 x-12 y^{2} \\
    6 x-12 y^{2} & -24 x y
    \end{array}\right]\)

    (b) \(H f(x, y, z)=\left[\begin{array}{ccc}
    0 & 8 y z^{3} & 12 y^{2} z^{2} \\
    8 y z^{3} & 8 x z^{3} & 24 x y z^{2} \\
    12 y^{2} z^{2} & 24 x y z^{2} & 24 x y^{2} z
    \end{array}\right]\)

    Exercise \(\PageIndex{4}\)

    Find the second-order Taylor polynomial for each of the following at the point \(\mathbf{c}\).

    (a) \(f(x, y)=x e^{-y}, \mathbf{c}=(0,0)\)

    (b) \(g(x, y)=x \sin (x+y), \mathbf{c}=(0,0)\)

    (c) \(f(x, y)=\frac{1}{x+y}, \mathbf{c}=(1,1)\)

    (d) \(g(x, y, z)=e^{x-2 y+3 z}, \mathbf{c}=(0,0,0)\)

    Answer

    (a) \(P_{2}(x, y)=x-x y\)

    (c) \( \text { (c) } P_{2}(x, y)=\frac{1}{2}-\frac{1}{4}(x-1)-\frac{1}{4}(y-1)+\frac{1}{8}(x-1)^{2}+\frac{1}{4}(x-1)(y-1)+\frac{1}{8}(y-1)^{2}\)

    Exercise \(\PageIndex{5}\)

    Classify each of the following symmetric \(2 \times 2\) matrices as either positive definite, negative definite, indefinite, or nondefinite.

    (a) \(\left[\begin{array}{ll}
    3 & 2 \\
    2 & 4
    \end{array}\right]\)

    (b) \(\left[\begin{array}{ll}
    1 & 2 \\
    2 & 2
    \end{array}\right]\)

    (c) \(\left[\begin{array}{rr}
    -2 & 3 \\
    3 & -5
    \end{array}\right]\)

    (d) \(\left[\begin{array}{ll}
    0 & 1 \\
    1 & 0
    \end{array}\right]\)

    (e) \(\left[\begin{array}{ll}
    1 & 0 \\
    0 & 1
    \end{array}\right]\)

    (f) \(\left[\begin{array}{ll}
    8 & 4 \\
    4 & 2
    \end{array}\right]\)

    Answer

    (a) Positive definite

    (c) Negative definite

    (e) Positive definite

    Exercise \(\PageIndex{6}\)

    Let \(M\) be an \(n \times n\) symmetric nondefinite matrix and define \(q: \mathbb{R}^{n} \rightarrow \mathbb{R}\) by

    \[ q(\mathbf{x})=\mathbf{x}^{T} M \mathbf{x} . \nonumber \]

    Explain why (1) there exists a vector \(\mathbf{a} \neq \mathbf{0}\) such that \(q(\mathbf{a})=0\) and (2) either \(q(\mathbf{x}) \geq 0\) for all \(\mathbf{x}\) in \(\mathbb{R}^n\) or \(q(\mathbf{x}) \leq 0\) for all \(\mathbf{x}\) in \(\mathbb{R}^n\).

    Exercise \(\PageIndex{7}\)

    Suppose \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is \(C^2\) on an open ball \(B^{n}(\mathbf{c}, r), \nabla f(\mathbf{c})=\mathbf{0},\) and \(H f(\mathbf{x})\) is positive definite for all \(\mathbf{x}\) in \(B^{n}(\mathbf{c}, r)\). Show that \(f(\mathbf{c})<f(\mathbf{x})\) for all \(\mathbf{x}\) in \(B^{n}(\mathbf{c}, r)\). What would happen if \(H f(\mathbf{x})\) were negative definite for all \(\mathbf{x}\) in \(B^{n}(\mathbf{c}, r)\)? What does this say in the case \(n=1\)?

    Exercise \(\PageIndex{8}\)

    Let

    \[ f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0), \\ 0, & \text { if }(x, y)=(0,0). \end{cases} \nonumber \]

    (a) Show that \(f_{x}(0, y)=-y\) for all \(y\).

    (b) Show that \(f_{y}(x, 0)=x\) for all \(x\).

    (c) Show that \(f_{y x}(0,0) \neq f_{x y}(0,0) .\)

    (d) Is \(f\) \(C^2\)?


    This page titled 3.4.E: Second-Order Approximations (Exercises) is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.