Skip to main content
Mathematics LibreTexts

2.4: Activities

  • Page ID
    83406
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Activity \(\PageIndex{1}\)

    Write an English language statement that has the logical form \(\neg (A \lor B)\text{.}\) Then write one that has the form \(\neg A \land \neg B\text{,}\) where \(A\) and \(B\) are the same as in your first sentence. DeMorgan's Laws say your two sentences are logically equivalent. Do you agree?

    Activity \(\PageIndex{2}\)

    What do you think DeMorgan's Laws would say about \(\neg (A \land B \land C)\text{?}\) Use propositional calculus to justify your answer.

    Activity \(\PageIndex{3}\)

    Recall that a pair of coordinates \((x,y)\) defines a point in the Cartesian plane.

    Consider the following conditional statement. 

    If Cartesian points \((a,b)\) and \((c,d)\) are actually the same point, then \(a = c\text{.}\) 

    Activity \(\PageIndex{4}\)

    In this activity, we will justify the equivalence

    \begin{equation*} p \leftrightarrow q \Leftrightarrow(p\rightarrow q) \land (q \rightarrow p) \text{.} \end{equation*}

    So consider the statements \(A = p \leftrightarrow q\) and \(B = (p\rightarrow q) \land (q \rightarrow p)\text{.}\)

    1. Argue that if \(A\) is false, then so is \(B\text{.}\)

    Do not use the proposed equivalence above as part of your argument.

    1. Argue that if \(B\) is false, then so is \(A\text{.}\)

    Do not use the proposed equivalence above as part of your argument.

    1. Explain why the the two arguments in Task a and Task b, taken together, justify the equivalence \(A \Leftrightarrow B\text{.}\) Do this without making any further arguments about the truth values of \(p\) and \(q\text{.}\)

     

    Activity \(\PageIndex{5}\)

    Consider the statements \(p \rightarrow (q_1 \lor q_2)\) and \((p \land \neg q_1) \rightarrow q_2\text{.}\)

    Use propositional calculus and substitution to show that these two statements are equivalent.


    This page titled 2.4: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.