Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.5: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 2.5.1

Consider again the two collections of related conditional statements in Example 2.3.1.

  1. For each of these collections, determine which two of the four related statements are true and which two are false. For the two false statements in each collection, demonstrate it by providing examples where the statements are false.
  2. Give an example of a conditional statement involving mathematical objects for which all four of conditional, contrapositive, converse, and inverse are all true.

Exercise 2.5.2

Suppose U is a tautology and E is a contradiction.

  1. Show that PUP for every statement P.
  2. Show that PEP for every statement P.

Exercise 2.5.3

Consider the equivalence of statements p(q1q2)(p¬q1)q2.

  1. Use a truth table to verify the equivalence.
  2. Use propositional calculus to demonstrate the equivalence.

Exercise 2.5.4

Use truth tables to establish the double negation, idempotence, commutativity, associativity, distributivity, and DeMorgan's Law equivalences presented in Proposition 2.2.1.

Exercise 2.5.5

This exercise asks you to demonstrate that the basic connective “if and only if” can be constructed out of the basic connectives “not”, “and”, and “or.”

pq(¬pq)(p¬q).

Exercise 2.5.6

Use Exercise 5 to demonstrate that exclusive or

(pq)¬(pq)

is equivalent to

p¬q. 

See

Statement 2 of Remark 1.1.1 for the difference between inclusive or and exclusive or.


This page titled 2.5: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?