Skip to main content
Mathematics LibreTexts

7.1: Principle of Mathematical Induction

  • Page ID
    83432
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    It is usual to take the principle of mathematical induction as an axiom; that is, we assume that mathematical induction is valid without proving it.

    Below is an outline of the idea behind why it is reasonable to assume that mathematical induction is valid. However, this outline does not constitute a proof since it technically uses mathematical induction implicitly.

    Idea

    Suppose \(n\) is fixed. We have a sequence of valid arguments: 

    \(\begin{equation}
    \begin{array}
    P(1) \rightarrow P(2) & \qquad P(2) \rightarrow P(3) &  \qquad \cdots & \qquad P(n-1) \rightarrow P(n) \\
    P(1) & \qquad P(2) & & \qquad P(n-1) \\
     \hline P(2) &  \hline \qquad P(3) &&  \hline \qquad P(n) 
    \end{array}
    \end{equation}\)

    Each is valid (modus ponens). So if we make the two assumptions stated in the principles (i.e. that \(P(1)\) is true and that \(P(k) \rightarrow P(k+1)\) is always true) we can trace the flow of truth from premises to conclusion in each argument in turn: 

    Definition: First Argument

    Premises true so conclusion is true.

    Definition: Second Argument

    Premises true (using conclusion of the first argument) so conclusion is true.

    Definition: Third Argument

    Definition: \((n-1)^{th}\) argument

    Premises true (using conclusion of the \((n-2)^{th}\) argument) so conclusion is true.

    The conclusion of \((n-1)^{th}\) argument is \(P(n)\text{,}\) so \(P(n)\) is true.

    Now, here is some specific terminology associated to proofs by induction.

    Definition: Base case

    the statement \(P(1)\) in a proof by mathematical induction

    Definition: Induction Step

    the portion of a proof by mathematical induction that establishes the statement \((\forall k) ( P(k) \rightarrow P(k+1) )\)

    Definition: Induction Hypothesis

    the assumption \(P(k)\) made as the first step in the induction step of a proof by mathematical induction

     
     

    Remark \(\PageIndex{1}\)

    Indexing of statements does not have to start at \(1\text{.}\)

    Example \(\PageIndex{1}\)

    Prove \(2^n \lt n!\) whenever \(n \ge 4\text{.}\)

    Note

    This statement is actually false for \(n=1,2,3\text{.}\)
     

    Solution

    Base case.
    For \(n=4\text{,}\) \(2^4 = 16\) and \(4! = 24\text{.}\)

    Induction step.
    Assume \(2^k \lt k!\) for some \(k \ge 4\text{.}\) We want to show \(2^{k+1} \lt (k+1)!\text{.}\) We have

    \begin{equation*} 2^{k+1} = 2(2^k) \lt 2(k!) \lt (k+1)(k!) = (k+1)! \text{.} \end{equation*}

     

    This page titled 7.1: Principle of Mathematical Induction is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.