Skip to main content
Mathematics LibreTexts

7.2: An application to logic

  • Page ID
    83433
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Theorem \(\PageIndex{1}\): Validity of the Extended Law of Syllogism

    The Extended Law of Syllogism is a valid argument.

    Proof

    By mathematical induction.

    Base case \(n=3\).

    This is just the ordinary Law of Syllogism.

    Induction step.

    Let \(k \ge 3\text{.}\) Consider the \(n = k\) version (below left) and the \(n = k+1\) version (below right) of the Extended Law of Syllogism.

    \begin{array}{cc}
    p_{1} \rightarrow p_{2} &\qquad p_{1} \rightarrow p_{2} \\
    p_{2} \rightarrow p_{3} &\qquad p_{2} \rightarrow p_{3} \\
    \vdots & \vdots \\
    &\qquad p_{k-1} \rightarrow p_{k} \\p_{k-1} \rightarrow p_{k}
    &\qquad p_{k} \rightarrow p_{k+1}\\ \hline{p_{1} \rightarrow p_{k} } &\hline \qquad p_{1} \rightarrow p_{k+1}
    \end{array}

     

    Assume the \(n = k\) version of the argument is valid. We want to show that the \(n = k + 1\) version is also valid. So suppose that premises of that latter version are all true. We need to show that the conclusion \(p_1 \rightarrow p_{k+1}\) must then also be true.

    But each premise of the \(n = k\) version is also a premise of the \(n = k + 1\) version, so we can say that we have assumed that every premise of the \(n = k\) version is true. But we have also assumed that version to be valid, so we may take its conclusion \(p_1 \rightarrow p_k\) to be true.

    Consider the following syllogism.

    \(\begin{aligned}
    &p_{1} \rightarrow p_{k} \\
    &p_{k} \rightarrow p_{k+1} \\
    &\hline p_{1} \rightarrow p_{k+1}
    \end{aligned}\)

    Since this is valid (base case \(n=2\)) and its premises are all true, the conclusion is true.

     

    This page titled 7.2: An application to logic is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.