Skip to main content
Mathematics LibreTexts

7.4: Activities

  • Page ID
    83435
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Below is a more detailed version of Procedure 7.1.1. Follow the steps of Procedure \(\PageIndex{1}\) to create a proof by induction for each of the requested proofs in this activity set. 

    Procedure \(\PageIndex{1}\): Mathematical induction, step-by-step

    1. Write the statement with \(n\) replaced by \(k\text{.}\)
    2. Write the statement with \(n\) replaced by \(k+1\text{.}\)
    3. Identify the connection between the \(k^{th}\) statement and the \((k+1)^{th}\) statement.
    4. Complete the induction step by assuming that the \(n = k\) version of the statement is true, and using this assumption to prove that the \(n = k + 1\) version of the statement is true.
    5. Complete the induction proof by proving the base case.

    Activity \(\PageIndex{1}\)

    A binary string is a “word” in which each “letter” can only be \(0\) or \(1\text{.}\)

    Prove that there are \(2^n\) different binary strings of length \(n\text{.}\)

    Activity \(\PageIndex{2}\)

    Prove that for every positive integer \(n\text{,}\) the binomial \(1-x^n\) can be factored as \((1-x)(1+x+x^2+\dotsb + x^{n-1})\text{.}\)

    Activity \(\PageIndex{3}\)

    Prove that the following argument is valid for all positive integers \(n\text{.}\) 

    \begin{aligned}
    \left(p_{1} \wedge q_{1}\right) &\rightarrow r_{1} \\
    \left(p_{2} \wedge q_{2}\right) &\rightarrow r_{2} \\
    &\vdots \\
    \left(p_{n} \wedge q_{n}\right) & \rightarrow r_{n} \\
    p_{1} \wedge p_{2} \wedge &\cdots \wedge p_{n}\\ \hline \left(q_{1} \rightarrow r_{1}\right) &\wedge\left(q_{2} \rightarrow r_{2}\right) \wedge \cdots \wedge\left(q_{n} \rightarrow r_{n}\right)
    \end{aligned}

    Careful.
    Recall that in this context, the words valid and true do not have the same meaning.

    Activity \(\PageIndex{4}\)

    Prove that a truth table involving \(n\) statement variables requires \(2^n\) rows.

    Activity \(\PageIndex{5}\)

    Prove that a knight can be moved from any square to any other square on an \(n \times n\) chess board by some sequence of allowed moves, for every \(n\ge 4\text{.}\)


    This page titled 7.4: Activities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.