Skip to main content
Mathematics LibreTexts

9.7: Sets of sets

  • Page ID
    90698
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Note \(\PageIndex{1}\)

    Sets can be made up of any kind of objects, even other sets! (But now we must be careful of the use of the phrase “contained in”.)

    Example \(\PageIndex{1}\)

    Consider

    \begin{align*} \mathscr{T} & = \{3n \vert n\in\mathbb{N}\} \text{,} & X & = \{A\subset \mathbb{N} \vert A \cap \mathscr{T} = \varnothing\} \text{,} & Y & = X \cup \mathscr{T} \text{.} \end{align*}

    Elements of \(\mathscr{T}\) are numbers. Elements of \(X\) are subsets of \(\mathbb{N}\) — that is, \(X\) is a set of subsets of \(\mathbb{N}\text{,}\) but is not itself a subset of \(\mathbb{N}\text{.}\) Elements of \(Y\) are either from \(X\) or from \(\mathscr{T}\text{,}\) so some elements of \(Y\) are numbers, and some elements of \(Y\) are sets of numbers.

    Definition: power set

    given a set \(A\text{,}\) the power set of \(A\) is the set \(\{ B \subseteq A \}\) of all subsets of \(A\)

    Definition: \(\mathscr{P}(A)\)

    the power set of the set \(A\)

    Warning \(\PageIndex{1}\)

    The elements of a power set are subsets of the set in question.

    Example \(\PageIndex{2}\): Power set of a “small” set.

    For \(A = \{a,b,c\}\text{,}\) we have

    \begin{equation*} \mathscr{P}(A) = \left\{ \; \emptyset, \; \{a\}, \; \{b\}, \; \{c\},\; \{a,b\},\; \{a,c\},\; \{b,c\},\; \{a,b,c\} \; \right\}\text{.} \end{equation*}
    Note the use of curly braces here. In particular, note that \(\emptyset\) has not been placed in its own set of curly braces because it is already a set itself.

    Example \(\PageIndex{3}\): A set of sets as a subset of a power set.

    For \(X\) as in Example \(\PageIndex{1}\), we have \(X \subseteq \mathscr{P}{\mathbb{N}}\text{.}\)

    Warning \(\PageIndex{2}\)

    We are not completely free to define sets any way we want.

    Example \(\PageIndex{4}\)

    Let

    \begin{equation*} R = \{ \text{any set } X \vert X \text{ is not an element of itself.} \}\text{.} \end{equation*}

    First note that there exist sets which satisfy the condition for membership in \(R\text{;}\) for example, the empty set. So \(R\) should not be not empty. If \(R\) is a set, then it is a “candidate” for membership in itself! Break into cases.

    Case \(R \in R\).
    Then \(R\notin R\text{,}\) which contradicts the case assumption.

    Case \(R \notin R\).
    Then \(R\in R\text{,}\) which contradicts the case assumption.

    Since all cases lead to a contradiction, \(R\) is cannot be a set! This is called Russell's Paradox, and is one of the reasons we rely upon “naive set theory” in this course.

    Remark \(\PageIndex{1}\)

    One of the ways to avoid Russell's Paradox is by requiring every object, including sets, to have a type, similar to how variables in a computer language can be declared to have a type. In such a scheme, a set is never just a set — it is always a set of a certain kind of object. Then an operation such as \(\mathbb{N} \cup \mathscr{P}{\mathbb{N}}\) would not be allowed, as \(\mathbb{N}\) is a set of numbers while \(\mathscr{P}(\mathbb{N})\) is a set of sets of numbers, and we have a type mismatch. And, more importantly, asking a question like “Is \(R \in R\text{?}\)” becomes nonsensical, as on the left of the \({} \in {}\) symbol \(R\) is required to be some type of object while on the right \(R\) is required to be a set of that type of object, and again we have a type mismatch.


    This page titled 9.7: Sets of sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.