Skip to main content
Mathematics LibreTexts

9: Sets

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 9.1: Basics
      Object: any distinct entity
    • 9.2: Defining sets
      Remember that mathematical notation is about communicating mathematical information. Since a set is defined by its member objects, to communicate the details of a set of objects one needs to provide a means to decide whether any given object is or is not an element of the set.
    • 9.3: Subsets and equality of sets
      Often we want to distinguish a collection of certain “special” elements within a larger set of elements.
    • 9.4: Complement, union, and intersection
      First, it is often convenient to restrict the scope of the discussion.
    • 9.5: Cartesian Product
      the set of all possible ordered pairs of elements from two given sets A and B, where the first element in a pair is from A and the second is from B
    • 9.6: Alphabets and words
      any set can be considered an alphabet
    • 9.7: Sets of sets
      Sets can be made up of any kind of objects, even other sets! (But now we must be careful of the use of the phrase “contained in”.)
    • 9.8: Activities
    • 9.9: Exercises

    This page titled 9: Sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?