Skip to main content
Mathematics LibreTexts

9.3: Subsets and equality of sets

  • Page ID
    83447
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Often we want to distinguish a collection of certain “special” elements within a larger set of elements.

    Definition: Subset

    a set whose elements are all members of another set

    Definition: \(A \subseteq B\)

    set \(A\) is a subset of or is contained in set \(B\)

    clipboard_eee00bc1cc3126db8d7be1a50311e1ac8.png
    Figure \(\PageIndex{1}\): A Venn diagram demonstrating a subset relationship

    Warning \(\PageIndex{1}\)

    We also sometimes use the phrase “contained in” to mean an object is an element of a set.

    Test \(\PageIndex{1}\): Subset

    To demonstrate \(A\subseteq B\text{,}\) prove \((\forall x)(x \in A \rightarrow x \in B)\text{.}\)

    Example \(\PageIndex{1}\): Basic examples involving familiar sets of numbers

    • Every natural number is an integer, so \(\mathbb{N} \subseteq \mathbb{Z}\text{.}\) To emphasize this, we could write \(\mathbb{N} = \{m \in \mathbb{Z} \vert m \ge 0 \}\text{.}\)
    • Every integer can be considered to be a rational number, since for every \(m\in\mathbb{Z}\) we can write \(m = \dfrac{a}{b}\) with \(a=m\) and \(b=1\text{.}\) Thus \(\mathbb{Z} \subseteq \mathbb{Q}\text{.}\)
    • Every rational number can be considered to be a real number if we identify fractions with their decimal expansions via long division. Thus \(\mathbb{Q} \subseteq \mathbb{R}\text{.}\)

    Example \(\PageIndex{2}\): Candidate-condition notation always defines subsets

    When we define a set by Candidate-condition notation, we first specify a pool of candidate elements, and then a condition or collection of conditions that those candidates must satisfy in order to actually be included in the set. But then every element in the set we are defining must first be from the set of candidate elements, so our defined set must be a subset of the candidate set.

    For example, in Example \(\PageIndex{1}\), we provided a definition for the set \(\mathbb{N}\) in candidate-condition form where the pool of candidates is the set \(\mathbb{Z}\text{.}\) This definition makes it explicit that \(\mathbb{N} \subseteq \mathbb{Z}\text{.}\)

    ​​​

    Example \(\PageIndex{3}\): Basic examples involving familiar sets of numbers

    Prove that \(A \subseteq B\) for

    \begin{align*} A & = \{ 3m + 1 \vert m \in \mathbb{Z}\}, & B & = \left \{x \in \mathbb{R} \bigg \vert \sin\left(\dfrac{\pi(x-1)}{3}\right) = 0 \right \}. \end{align*}

    Solution

    There are an infinite number of elements of \(A\text{,}\) so we cannot check that all elements of \(A\) are also elements of \(B\) one-by-one. Instead, we let a variable \(x\) represent an arbitrary but unspecified element of \(A\text{.}\) Since all elements of \(A\) have the form \(3m+1\) for some \(m \in \mathbb{Z}\text{,}\) we have \(x = 3m+1\) for some \(m \in \mathbb{Z}\text{.}\) Check the condition for being an element of \(B\) by calculating

    \begin{equation*} \sin\left(\dfrac{\pi(x-1)}{3}\right) = \sin\left(\dfrac{\pi((3m+1)-1)}{3}\right) = \sin (m\pi) = 0. \end{equation*}

    Therefore, \(x \in B\text{.}\) Since the above calculation works for every \(m \in \mathbb{Z}\text{,}\) all elements of \(A\) are elements of \(B\text{.}\)

    Definition: Set equality

    write \(A = B\) if both sets consist of precisely the same elements

     

    This page titled 9.3: Subsets and equality of sets is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.