Skip to main content
Mathematics LibreTexts

10.3: Important Examples

  • Page ID
    83453
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Definition: identity function (on a set \(A\))

    the function \(A \to A\) defined by \(a \mapsto a\)

    Definition: \(id_A: A\rightarrow A\)

    the identity function on on set \(A\)

    Note \(\PageIndex{1}\)

    An identity function is always a bijection.

    Definition: inclusion function (on subset \(A \subseteq X\))

    the function \(A \to X\) defined by \(a \mapsto a\)

    Definition: Projection Functions (on a Cartesian product \(A \times B\))

    the functions \(A \times B \to A\) and \(A \times B \to B\) defined by \((a,b) \mapsto a\) and \((a,b) \mapsto b\)

    Definition: \(\rho_A : A \times B \rightarrow A\)

    the projection function onto the first factor \(A\) in the Cartesian product \(A \times B\)

    Definition: \(\rho_B : A \times B \rightarrow B\)

    the projection function onto the second factor \(B\) in the Cartesian product \(A \times B\)

    Example \(\PageIndex{1}\)

    Consider \((\dfrac{1}{2},\pi) \in \mathbb{Q} \times \mathbb{R}\text{.}\) Then

    \begin{align*} p_{\mathbb{Q}} \left( \dfrac{1}{2}, \pi \right) & = \dfrac{1}{2}, & p_{\mathbb{R}} \left( \dfrac{1}{2}, \pi \right) & = \pi \text{.} \end{align*}

    Extend.

    We may of course similarly define a projection function on a Cartesian product with any number of factors. Write

    \begin{equation*} \rho_i: A_1 \times A_2 \times \cdots \times A_n \rightarrow A_i \end{equation*}

    to mean the projection function onto the \(i^{th}\) factor \(A_i\) in the Cartesian product

    \begin{equation*} A_1 \times A_2 \times \cdots \times A_n\text{.} \end{equation*}

    Alternatively, we may write

    \begin{equation*} \text{proj}_i: A_1 \times A_2 \times \cdots \times A_n \rightarrow A_i \end{equation*}

    for this function.

    Note \(\PageIndex{3}\)

    A projection is always surjective (except possibly when one or more of the factors in the Cartesian product is the empty set).

    Definition: Restricting the domain

    the “induced” function \(A \to Y\) created from function \(f: X\rightarrow Y\) and subset \(A \subseteq X\) by “forgetting” about all elements of \(X\) that do not lie in \(A\)

    Definition: \(f \vert _A\)

    restriction of function \(f: X\rightarrow Y\) to subset \(A \subseteq X\)

    Definition: \(f\vert A\)

    alternative domain restriction notation

    Definition: \(\text{res} _A^X f\)

    alternative domain restriction notation

    clipboard_e12bb75559efc6d3d5eef946684ccb952.png
    Figure \(\PageIndex{1}\): A Venn diagram of restricting the domain of a function.

    Example \(\PageIndex{2}\): Domain restriction.

    For \(f: \mathbb{Z} \rightarrow \mathbb{N}\text{,}\) \(f(m) = \vert m \vert \text{,}\) we have \(f \vert _{\mathbb{N}} = \id_{\mathbb{N}}\text{.}\)

    Checkpoint \(\PageIndex{1}\):Properties of restrictions.

    Consider function \(f: X\rightarrow Y\) and subset \(A \subseteq X\text{.}\)

    1. If \(f\) is injective, is \(f \vert _A\) injective?
    2. If \(f \vert _A\) is injective, must \(f\) be injective?
    3. Answer the previous two questions replacing “injective” with “surjective”.

    Remark \(\PageIndex{1}\)

    The concept of restricting the domain makes our previously defined concept image of a function on a subset unnecessary: for function \(f: X\rightarrow Y\) and subset \(A \subseteq X\text{,}\) the image of \(f\) on \(A\) is the same as the image of the restriction \(f \vert _A\text{.}\)

    Definition: Restricting the codomain

    the “induced” function \(X \to B\) created from function \(f: X\rightarrow Y\) and subset \(B \subseteq Y\) by “forgetting” about all elements of \(Y\) that do not lie in \(B\text{,}\) where \(B\) must contain the image of \(f\)

    clipboard_e9a172c244578dd85a22d327e13c06285.png
    Figure \(\PageIndex{2}\): A Venn diagram of restricting the codomain of a function.
     

    Example \(\PageIndex{3}\): Codomain restriction

    Consider \(f: \mathbb{R} \rightarrow \mathbb{R}\text{,}\) \(f(x) = x^2\text{.}\) It would be more precise to write \(f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} \\text{,}\) since \(x^2 \ge 0\) for all \(x \in \mathbb{R}\text{.}\)

    Note \(\PageIndex{4}\)

    If we restrict the codomain all the way down to the image set \(f(X)\text{,}\) the resulting map \(f : X \rightarrow f(X) \) is always surjective. In particular, if \(f: X \xrightarrow Y\) is injective, then by restricting the codomain we can obtain a bijection \(f : X \rightarrow f(X) \text{.}\)

    Definition: Extension of a function

    relative to function \(f: A \rightarrow B\) and superset \(X \supseteq A\text{,}\) a function \(g: X \rightarrow B\) so that \(g(a) = f(a)\) for all \(a \in A\)

    clipboard_e2f740678a4bbb4c6b2deead1df72adfe.png
    Figure \(\PageIndex{3}\): A Venn diagram of a function extension.

    Note \(\PageIndex{5}\)

    The condition defining the concept extension function can be more succinctly stated as requiring function \(g: X \rightarrow B\) with \(A \subseteq X\) satisfy \(g \vert _A = f\text{.}\)

    Example \(\PageIndex{4}\): Floor function.

    Write \(\text{flr}:\mathbb{R} \rightarrow \mathbb{Z}\) to mean the floor function: for real input \(x\text{,}\) the output \(\text{flr} (x)\) is defined to be the greatest integer that is less than or equal to \(x\text{.}\) Usually we write

    \begin{equation*} \text{flr} (x) = \lfloor x \rfloor \text{.} \end{equation*}
    As every integer is less than or equal to itself, we have \(\text{flr} (z) = z\) for every \(z \in \mathbb{Z}\text{.}\) This says that the floor function is an extension of the identity function \(\id_{\mathbb{Z}}\text{.}\)

    One of the most common ways to extend a function to a larger domain is to pick an appropriate constant value in the codomain to assign to all “new” inputs in the enlarged domain.

    Definition: Extenstion by zero

    relative to function \(f: A \rightarrow Z\) and superset \(X \supseteq A\text{,}\) where \(Z\) is a set of “numbers” containing a zero element, the extension function \(g: X \rightarrow Z\) defined by

    \begin{equation*} g(x) = \begin{cases} f(x)\text{,} & x \in X \text{,} \\ 0\text{,} & \text{otherwise.} \end{cases} \end{equation*}

    Example \(\PageIndex{5}\): Extending the identity function by zero.

    Define \(\widetilde{\id}_{\mathbb{Z}} : \mathbb{R} \rightarrow \mathbb{Z}\) by

    \begin{equation*} {\widetilde{\id}}_{\mathbb{Z}}(x) = \begin{cases} x\text{,} & x \in \mathbb{Z} \text{,} \\ 0\text{,} & \text{otherwise.} \end{cases} \end{equation*}
    Then \(\widetilde{\id}_{\mathbb{Z}}\) is the extension by zero of the identity function \(\id_{\mathbb{Z}}\text{.}\)

    Compare.

    Example \(\PageIndex{4}\) also involved an extension of the identity function \(\id_{\mathbb{Z}}\) — was it an extension by zero?


    This page titled 10.3: Important Examples is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.