Skip to main content
Mathematics LibreTexts

10.2: Properties of Functions

  • Page ID
    83452
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Definition: Surjective Function

    a function whose image is all of its codomain — that is, every element of the codomain is an output for the function;

    Definition: Surjective Function

    a surjective function

    Definition: Onto

    synonym for surjective

    Definition: \(f: A \twoheadrightarrow B\)

    function \(f\) is surjective

    A function \(f: A \rightarrow B\) is surjective if \(f(A) = B\text{.}\) Since we have \(f(A) \subseteq B\) by definition of image, to show that a function is surjective we only need to show \(f(A) \supseteq B\text{.}\)

    Test \(\PageIndex{1}\): Surjective function.

    • Function \(f: A \rightarrow B\) is surjective if \(B \subseteq f(A)\text{.}\) That is, \(f\) is surjective if for every element \(b \in B\text{,}\) there exists at least one element \(a \in A\) such that \(f(a) = b\text{.}\)
    • Function \(f: A \rightarrow B\) is not surjective if there exists at least one element \(b \in B\) for which there is no element \(a \in A\) satisfying \(f(a) = b\text{.}\) (Equivalently, there exists \(b \in B\) for which every \(a \in A\) satisifes \(f(a) \neq b\text{.}\))

    Definition: Injective Function

    a function for which two different inputs never produce the same output

    Definition: Injection

    an injective function

    Definition: Embedding

    synonym for injection

    Definition: One-to-one

    synonym for injective

    Definition: \(f: A \hookrightarrow B\)

    function \(f\) is injective

    Example \(\PageIndex{2}\): Demonstrating that a function is not injective.

    The function \(f: \mathbb{R} \rightarrow \mathbb{R} \text{,}\) \(f(x) = x^2\text{,}\) is not injective, since \(f\) has repeated outputs. For example, \(f(-1) = f(1)\text{.}\) And in fact, \(f(-x) = f(x)\) for every \(x\in \mathbb{R}\text{.}\)

    Example \(\PageIndex{3}\): Demonstrating that a function is injective.

    Verify that the function \(f: \mathbb{N} \rightarrow \mathbb{N} \text{,}\) \(f(n) = 2n+1\text{,}\) is injective.

    Solution

    Using the contrapositive version of the Injective Function Test, suppose domain elements \(n_1,n_2 \in \mathbb{N}\) satisfy \(f(n_1) = f(n_2)\text{.}\) Then using the formula defining the input-output rule for \(f\text{,}\) we have

    \begin{equation*} 2 n_1 + 1 = 2 n_2 + 1 \text{,} \end{equation*}
    which reduces to \(n_1 = n_2\text{.}\)

    An injection \(f: A \hookrightarrow B\) gives us a way of thinking of \(A\) as a subset of \(B\text{,}\) by considering \(f(A) \subseteq B\text{.}\)

    Example \(\PageIndex{4}\): Turning letters into numbers.

    Let \(\Sigma = \{a, b, \ldots, z\} \text{,}\) and define \(\varphi: \Sigma \rightarrow \mathbb{N}\) by the following table.

    \(\sigma\) \(a\) \(b\) \(c\) \(\cdots\) \(z\)
    \(\varphi(\sigma)\) \(1\) \(2\) \(3\) \(\cdots\) \(26\)

    Then \(f\) embeds \(\Sigma\) into \(\mathbb{N}\) in a familiar way, and lets us think of letters as numbers.

    Definition: Bijective Function

    a function that is both injective and surjective

    Definition: Bijection

    an bijective function

    Definition: One-to-one Correspondence

    synonym for bijection

    Example \(\PageIndex{5}\)

    Function \(f: \mathbb{R} \rightarrow \mathbb{R} \text{,}\) \(f(x) = x^3\) is bijective.

    A bijection \(f: A \rightarrow B\) allows us to think of \(A\) and \(B\) as essentially the same sets.

    Example \(\PageIndex{6}\): Identifying letters with numbers.

    Consider again \(f: \Sigma \rightarrow \mathbb{N}\) from Example \(\PageIndex{4}\). If we write \(B = f(\Sigma) = \{1,2,3,\ldots ,26\}\text{,}\) then really we could think of the function as being defined \(f: \Sigma \rightarrow B\text{.}\) This version of \(f\) is bijective, and allows us to identify each letter with a corresponding number:

    \begin{align*} a & \leftrightarrow 1, & b & \leftrightarrow 2, & c & \leftrightarrow 3, & & \ldots , & z & \leftrightarrow 26. \end{align*}
    In this way, we can think of \(\Sigma\) and \(B\) as essentially the same set.

    Example \(\PageIndex{7}\): Recognizing bijections.

    Which of the following functions are bijections?

    \begin{align*} f \colon \mathbb{Z} & \to \mathbb{Z}, & g \colon \mathbb{Z} & \to \mathbb{N}, & h \colon \mathbb{Z} & \to \mathbb{Z},\\ m &\mapsto 2m, & m & \mapsto \vert m \vert, & m & \mapsto -m. \end{align*}

    Solution.

    Is \(f\) bijective?.

    No, \(f\) is not bijective because it is not surjective. For example, there is no \(m\in \mathbb{Z}\) such that \(f(m) = 1\text{.}\)

    Is \(g\) bijective?.

    No, \(g\) is not bijective because it is not injective. For example, \(g(-1) = g(1)\text{.}\)

    Is \(h\) bijective?.

    Yes, \(h\) is bijective. It is injective because if \(m_1 \ne m_2\) then \(-m_1 \ne -m_2\text{.}\) And it is surjective because for \(n\in \mathbb{Z}\text{,}\) we can realize \(n\) as an output \(n = h(m)\) by setting \(m = -n\text{.}\)

    Checkpoint \(\PageIndex{1}\): Bijections of counting sets.

    For \(m \in \mathbb{N}\) write

    \begin{equation*} \mathbb{N}_{<m} = \{n \in \mathbb{N}\rightarrow n \lt m = \{ 0,\, 1,\, \ldots ,\, m-1\} \text{.} \end{equation*}
    Prove that there exists a bijection \(\mathbb{N}_{<l} \to \mathbb{N}_{<m}\) if and only if \(\ell = m\text{.}\)


    This page titled 10.2: Properties of Functions is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.