Skip to main content
Mathematics LibreTexts

10.5: Inverses

  • Page ID
    83455
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Suppose \(f: A\rightarrow B\) is a function. By definition, \(f\) associates an element of \(B\) to each element of \(A\text{.}\) Sometimes we want to reverse this process: given an element \(b \in B\text{,}\) can we determine an element \(a \in A\) such that \(f(a) = b\text{?}\) We'll begin to answer this question by first finding all possible “reverse results” from elements in subsets of \(B\text{.}\)

    Definition: inverse image (of a subset \(C\) of the codomain \(B\))

    the set of all domain elements \(a \in A\) for function \(f: A\rightarrow B\) for which the corresponding output element \(f(a)\) lies in the subset \(C\) of the codomain

    Definition: \(f^{-1}(C)\)

    the inverse image of the subset \(C \subseteq B\) under the function \(f: A\rightarrow B\text{,}\) so that

    \begin{equation*} f^{-1}(C) = \{a \in A \vert f(a) \in C\} \end{equation*}

    Now let's return to the question of trying to reverse an input-output relationship \(f(a) = b\text{:}\) the set \(f^{-1}\bbrac{\{b\}}\) collects together all possible candidates for the inverse image of \(b\text{.}\)

    Definition: inverse image (of an element \(b\) of the codomain \(B\))

    the inverse image \(f^{-1}(\{b\})\text{,}\) which consists of all domain elements \(a \in A\) for which \(f(a) = b\)

    Definition: \(f^{-1} (b)\)

    simplified notation to mean the inverse image of element \(b\)

    This gives us a way to associate to an element \(b \in B\) a set \(f^{-1} (b)\) of elements of \(A\text{.}\)

    Question \(\PageIndex{1}\)

    When does this association \(b \mapsto f^{-1} (b)\) give us a function \(f^{-1} : B \rightarrow A\text{?}\)

    There are two possible ways that this will fail to give us a function.

    1. Suppose there is an element \(b \in B\) such that the set \(f^{-1} (b)\) contains (at least) two distinct elements \(a_1,a_2\text{.}\) Then in general there is no way to choose between \(f^{-1} (b) = a_1\) and \(f^{-1} (b) = a_2\text{.}\) Therefore, if \(f\) is not injective, the function \(f^{-1} : B \rightarrow A\) is not well-defined.
    2. Suppose there is an element \(b \in B\) such that \(f^{-1} (b) = \emptyset \text{.}\) Then there is no element of \(A\) which we can assign to \(f^{-1} (b)\text{.}\) Therefore, if \(f\) is not surjective, the function \(f^{-1} : B \rightarrow A\) is undefined on some elements of \(B\text{.}\)

    So it seems we will need a function to be bijective in order to be able to reverse the input-output rule to obtain an inverse function.

    Definition: inverse function

    for a bijective function \(f\text{,}\) the inverse function associates to each codomain element of \(f\) the corresponding unique domain element that produces it through \(f\)

    Definition: \(f^{-1}\)

    the inverse function \(f^{-1} : B \rightarrow A\) for bijective function \(f: A\rightarrow B\text{,}\) so that for \(b \in B\) we have \(f^{-1} (b)\) defined to be the unique element \(a \in A\) such that \(f(a) = b\)

    Example \(\PageIndex{2}\): An invertible single-variable, real-valued function

    The function \(f: \mathbb{R} \rightarrow \mathbb{R}\text{,}\) \(f(x) = x^3\text{,}\) is bijective and has inverse \(f^{-1}(x) = x^{\dfrac{1}{3}}\text{.}\)

    Example \(\PageIndex{3}\): Inverting a numerical encoding of the alphabet

    Returning again to the bijection \(\varphi: \Sigma \rightarrow B\) encountered in Example 10.2.4 and Example 10.2.6, where

    \begin{align*} \Sigma & = \{a, b, \ldots, z\} , & B & = \{ 1, 2, \ldots, 26 \}, \end{align*}
    the inverse function \(\varphi ^{-1} : B \rightarrow \Sigma\) associates to each number \(1 \le b \le 26\) the corresponding letter at that position of the alphabet. For example, \(\varphi^{-1} (11) = \text{k} \text{.}\)

    Example \(\PageIndex{4}\): A non-invertible function

    The function \(g:\mathbb{R} \rightarrow \mathbb{R}\text{,}\) \(g(x) = x^2\text{,}\) does not have an inverse since it is not bijective. However, the function \(h:\mathbb{R}_{\geq 0}: \mathbb{R}_{\geq 0}\text{,}\) \(h(x) = x^2\text{,}\) so that \(h = g\vert _{\mathbb{R}_{\geq 0}}\) but with codomain also restricted down to the image of \(g\text{,}\) has inverse \(h^{-1}(x) = \sqrt{x}\text{.}\)

    Note

    If \(f\) is bijective, then so is \(f^{-1}\text{,}\) and \(f^{-1}\) is the unique function \(B \to A\) such that both

    \begin{align*} f^{-1} \circ f & = \id_A, & f \circ f^{-1} & = \id_B \text{.} \end{align*}

    Checkpoint

    Prove that if \(f\) is bijective then so is \(f^{-1}\text{,}\) and \((f^{-1})^{-1} = f\text{.}\)


    This page titled 10.5: Inverses is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.