11.4: Inductive definitions
- Page ID
- 83460
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We can use the idea of recursive definitions in a more general manner.
a method of defining a collection of objects, where each object in the collection can be constructed from objects assumed or already known to exist in the collection
a statement specifying some specific initial objects that belong to the inductively-defined set
a statement describing a means to determine new objects in the inductively-defined set from those already known to belong
a declaration that no objects belong to the inductively-defined set unless obtained from a finite number of applications of the base and inductive clauses
Let us define a set \(\mathscr{L}\) with the following inductive definition.
Base clause.
For every \(m \in \mathbb{N}\text{,}\) the statement variable \(p_m\) belongs to \(\mathscr{L}\text{.}\)
Inductive clause.
Given statements \(A,B \in \mathscr{L}\text{,}\) the statements
\begin{equation*} \neg A, \quad A \land B, \quad A \lor B, \quad A \rightarrow B, \quad A \leftrightarrow B \end{equation*}
are also elements of \(\mathscr{L}\text{.}\)
Limiting clause.
The set \(\mathscr{L}\) does not contain any elements except those that can be obtained from a finite number of applications of the base and inductive clauses.
For example, the logical statement \(\neg p_2 \land (p_1 \rightarrow p_2)\) is in \(\mathscr{L}\) by the following construction.
\begin{equation*} p_1, p_2 \in \mathscr{L} \quad \Rightarrow \quad \neg p_2 \in \mathscr{L}, \;\; p_1 \rightarrow p_2 \in \mathscr{L} \quad \Rightarrow \quad \neg p_2 \land (p_1 \rightarrow p_2) \in \mathscr{L} \end{equation*}
We assume that an empty set \(\emptyset\) exists. Let us define a set \(N\) inductively.
Base clause.
The empty set \(\emptyset\) is an element of \(N\text{.}\)
Inductive clause.
If \(X\) is an element of \(N\) and \(X\) itself is a set, then the set \(X^+ = X \cup \{X\}\) is also an element of \(N\text{.}\)
Limiting clause.
The set \(N\) does not contain any other elements except those that can be obtained from a finite number of applications of the base and inductive clauses.
Note that the three clauses together imply that every element of \(N\) must be a set, so the “and \(X\) itself is a set” part of the inductive clause is superfluous.
Since the base clause involves a single initial element of \(N\) and the inductive clause produces one new element of \(N\) from a single old element of \(N\text{,}\) we can explicitly carry out the construction step-by-step. We now define the natural numbers to be the elements in this construction:
\begin{align*} 0 & = \emptyset, \\ 1 & = 0^+ = 0 \cup \{ 0 \} = \emptyset \cup \{ 0 \} = \{ 0 \} \ne 0, \\ 2 & = 1^+ = 1 \cup \{ 1 \} = \{ 0 \} \cup \{ 1 \} = \{ 0, 1 \} \ne 0,1, \\ 3 & = 2^+ = 2 \cup \{ 2 \} = \{ 0, 1 \} \cup \{ 2 \} = \{ 0, 1, 2 \} \ne 0,1,2 \\ & \;\;\vdots \end{align*}
We usually write \(\mathbb{N}\) for this set instead of \(N\text{.}\)
Note that the number of elements in each natural number (as a set) is equal to the number defined by that set, and that each natural number \(m\) is defined to be the set that we have previously called \(\mathbb{N}_{<m}\text{.}\)
Bonus
In Example \(\PageIndex{2}\) above, we constructed the set \(\mathbb{N}\) inductively using only the axioms of set theory. But how do we do arithmetic with this definition? We can define addition as an infinite collection of inductively-defined functions: for each \(m \in \mathbb{N}\text{,}\) define a “sum with \(m\)” function \(s_m: \mathbb{N} \rightarrow \mathbb{N}\) as follows.
Base clause.
Set \(s_m(0) = m\text{.}\)
Inductive clause.
For \(n \in \mathbb{N}\) such that \(s_m(n)\) is already defined, set
That is, if \(s_m(n)\) is defined and \(n^+\) is the next natural number after \(n\) in the inductive definition of \(\mathbb{N}\text{,}\) then define \(s_m(n^+)\) to be the next natural number after \(s_m(n)\text{.}\)
We then use the symbols \(m + n\) to mean \(s_m(n)\text{.}\) In this notation, you can think of the inductive clause above as saying that once \(m+n\) is defined, we can define \(m+(n+1)\) as \((m+n)+1\text{.}\)
If you are bored on a Friday or Saturday night, you can try the following using the above definition of addition in \(\mathbb{N}\text{.}\)
- Prove that addition in \(\mathbb{N}\) is:
- commutative: \(m+n = n+m\text{,}\) i.e. \(s_m(n) = s_n(m)\) for all \(m,n \in \mathbb{N}\text{;}\) and
- associative: \((m+n)+\ell = m + (n+\ell)\text{,}\) i.e. \(s_{s_m(n)}(\ell) = s_m(s_n(\ell))\text{,}\) for all \(m,n,\ell \in \mathbb{N}\text{.}\)
- Use the idea that every positive integer should have a negative to define \(\mathbb{Z}\) as a subset of the Cartesian product \(\mathbb{N} \times \mathbb{N}\text{.}\) Then define addition and subtraction in \(\mathbb{Z}\text{.}\)
- Hint.
-
To define \(\mathbb{Z}\text{,}\) first choose an appropriate one-to-one function embedding \(\mathbb{N}\) into \(\mathbb{N} \times \mathbb{N}\) in such a way that will then allow you to attach an additional second piece of information to each natural number (namely, a designator of the sign of the number).