11.6: Exercises
- Page ID
- 91930
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Compute each of the terms \(s_2,s_3,s_4,s_5,s_6\) for the sequence defined recursively by
\begin{equation*} s_n = \sqrt{s_{n-2}^2 + s_{n-1}^2}, \quad n \ge 2, \end{equation*}
with initial terms \(s_0 = 3\) and \(s_1 = 4\text{.}\)
Solving by iteration.
In each of Exercises 2–8, use iteration to determine an expression for the \(n^{th}\) term of the sequence as a formula in \(n\) (and the initial term(s) of the sequence, if necessary).
In some of these, you may find the following formulas useful.
\begin{gather*} 1 + 2 + 3 + \dotsb + m = \frac{m (m+1)}{2} \\ 1^2 + 2^2 + 3^2 + \dotsb + m^2 = \frac{m (m+1) (2m+1)}{6} \\ r^0 + r^1 + r^2 + \dotsb + r^{m-1} = \frac{r^m - 1}{r - 1}, \quad r \ne 0,1 \end{gather*}
\(a_n = 2na_{n-1}\text{,}\) \(a_0 = 1 \text{.}\)
\(a_n = (2n-1)a_{n-1}\text{,}\) \(a_0 = 1 \text{.}\)
\(a_n = a_{n-1} + 3^{n-1}\text{,}\) \(a_0 = 1 \text{.}\)
\(a_n = a_{n-1} + n - 1\text{,}\) \(a_0 = 1 \text{.}\)
\(a_n = a_{n-1} + n + n^2\text{,}\) \(a_0 = 1 \text{.}\)
\(a_n = f(a_{n-1})\text{,}\) where \(f(x)\) is the linear function \(f(x) = mx + b \) for some fixed constants \(m,b\text{,}\) and with arbitrary initial term \(a_0\text{.}\)
\(a_n = 4a_{n-2}\text{,}\) \(n \ge 2 \text{,}\) \(a_0 = 1 \text{,}\) \(a_1 = 2\text{.}\)
- Hint.
-
Treat the cases \(n\) even and \(n\) odd separately.
Fibonacci numbers are those that appear in the sequence defined recursively by
\begin{align*} a_n & = a_{n-1} + a_{n-2}, & n & \ge 2 \text{,} \end{align*}
for some choice of initial terms \(a_0, a_1\text{.}\)
- See.
Using initial terms \(a_0 = a_1 = 1\text{,}\) use mathematical induction to prove that every Fibonacci number \(a_n\) satisfies \(a_n \lt 2^n\) (except, of course, for \(a_0\text{.}\)
You are attempting to predict population dynamics on a yearly basis.
Suppose a population increases by a factor of \(i\) each year. That is, if we set \(p=100i\text{,}\) then the population increases by \(p\) percent. (Careful: This is a description of the increase in population, not the total population. For example, \(i = 1\) means that the population doubles.)
- Write down a recurrence relation that expresses the population \(P_n\) in the \(n^{th}\) year relative to the previous year.
- Use iteration to determine an expression for the population in the \(n^{th}\) year as a formula in \(n\text{,}\) \(i\text{,}\) and the initial population \(P_0\text{.}\)
- Suppose that on top of the natural population increase of \(i\) percent per year, immigration increases the population by fixed amount \(A\) people annually. Design a new recurrence relation for \(P_n\text{,}\) and use iteration to determine an expression for the population in the \(n^{th}\) year as a formula in \(n\text{,}\) \(i\text{,}\) \(A\text{,}\) and the initial population \(P_0\text{.}\)
Explicitly describe how to construct the following logical statement in a finite number of steps using the inductive definition for \(\mathscr{L}\text{,}\) the set of all possible logical statements, given in Example 11.4.1.
\begin{equation*} (p_1 \land p_2) \rightarrow ( (\neg p_3 \lor p_1) \Leftrightarrow (p_3 \land \neg p_2 ) ) \end{equation*}
The set \(\mathscr{C}\) of constructible numbers can be defined inductively as follows.
Base clause.
Assume \(1 \in \mathscr{C}\text{.}\)
Inductive clauses.
Whenever \(a,b \in \mathscr{C}\text{,}\) then so are
\begin{equation*} a+b, \quad ab, \quad a/b, \quad \sqrt{a} \text{.} \end{equation*}
Whenever \(a,b \in \mathscr{C}\) with \(a>b\text{,}\) then \(a-b\) is also in \(\mathscr{C}\text{.}\)
Limiting clause.
The set \(\mathscr{C}\) contains no elements other than those that can be obtained through a finite number of applications of the base and/or inductive clauses.
Explicitly verify, by listing each application of the relevant clauses, that the roots of the polynomial \(2x^2 - 3x + \frac{7}{8}\) are both constructible numbers.
Consider the following inductively defined set \(A \subseteq \mathbb{N}\text{.}\)
Base clause.
Assume \(32879 \in A\text{.}\)
Inductive clauses.
When \(a\) is an element of \(A\text{,}\) then each of the prime factors of \(a\) is also an element of \(A\text{.}\)
Whenever prime \(p\) is an element of \(A\text{,}\) then \(p+1\) is also an element of \(A\text{.}\)
Limiting clause.
The set \(A\) contains no elements other than those that can be obtained through a finite number of applications of the base and/or inductive clauses.
Determine all elements of \(A\text{.}\)
- Hint.
-
To help with this question, you may wish to search for “list of small primes” on the internet.
Devise an algorithm that will produce an answer to the following question in a finite number of applications of the inductive clause that we used to define the natural numbers in Example 11.4.2.
Given \(m,n \in \mathbb{N}\) with \(m \ne n\text{,}\) is \(m \gt n\) or is \(n \gt m\) ?