Skip to main content
Mathematics LibreTexts

19.4: Total Orders

  • Page ID
    83502
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Definition: Comparable Elements

    elements \(a,b\) in a partially ordered set such that either \(a \preceq b\) or \(b \preceq a\)

    Definition: Incomparable Elements

    elements that are not comparable

    Example \(\PageIndex{1}\): Comparable and incomparable subsets.

    Let \(U\) represent some universal set containing at least two elements, and consider \(\mathscr{P}(U)\) partially ordered by \(\mathord{\subseteq}\text{.}\)

    • Both the empty set \(\emptyset\) and the universal set \(U\) are comparable to every element of \(\mathscr{P}(U)\text{.}\)
    • For \(x,y\in U\) with \(x\ne y\text{,}\) then \(\{x\},\{y\}\) are incomparable.
    • In fact, for every non-empty, proper subset \(A \subsetneqq U\) there exists a subset \(B \subseteq U\) which is incomparable to \(A\text{:}\) take \(B = A^C\text{.}\)

    However, do not let the second two points above lead you astray: it is not necessary for subsets to be disjoint in order to be incomparable. As long as each of a pair of subsets contains an element that the other doesn't, then the two will be incomparable by \(\mathord{\subseteq}\text{.}\)

    Definition: Total Order

    a partial order on a set such that every pair of elements is comparable

    Definition: Totally Ordered Set

    a set equipped with a total order

    Example \(\PageIndex{2}\): Subset order is not total.

    For universal set \(U\text{,}\) order \(\mathord{\subseteq}\) on \(\mathscr{P}(U)\) is not total except when \(\vert U \vert \le 1\text{.}\)

    Example \(\PageIndex{3}\): Usual order of numbers is total.

    Our usual order for numbers, \(\mathord{\leq}\text{,}\) is a total order on \(\mathbb{N}\text{,}\) on \(\mathbb{Z}\text{,}\) on \(\mathbb{Q}\text{,}\) or on \(\mathbb{R}\text{.}\)

    Example \(\PageIndex{4}\): Total order on alphabet induces total order on words.

    If \(\mathord{\preceq}\) is a total order on an alphabet \(\Sigma\text{,}\) then the lexicographic order \(\preceq^\ast\) described in Example 19.2.6 is a total order on the set of words \(\Sigma^{\ast}\text{.}\)

    Example \(\PageIndex{5}\): Pulling back a total order through an injection.

    If \(B\) is totally ordered and we use an injection \(f: A \hookrightarrow B\) to “pull back” the order on \(B\) to an order on \(A\) (see Example 19.2.10), then the newly created order on \(A\) will also be total.

    Example \(\PageIndex{6}\): Countable can be totally ordered.

    If \(A\) is a countably infinite set, then there exists a bijection \(f: \mathbb{N} \rightarrow A\text{.}\) We can use the inverse \(f^{-1}: A \rightarrow \mathbb{N}\) to “pull back” the usual total order \(\mathord{\le}\) on \(\mathbb{N}\) to a total order on \(A\) (see Example \(\PageIndex{5}\)).

    Another point of view on this is that our bijection \(f\) creates an infinite sequence

    \begin{equation*} a_0, a_1, a_2, \ldots \text{,} \end{equation*}
    where each element of \(A\) appears exactly once. This sequence can be turned into a specification of the total order on \(A\) by just turning the commas into \(\mathord{\le}\) symbols:

    \begin{equation*} a_0 \le a_1 \le a_2 \le \cdots \text{.} \end{equation*}

    Remark \(\PageIndex{1}\)

    The pattern of Example \(\PageIndex{6}\) becomes even simpler when we apply it to a finite set: a total order on a finite set is no different than an ordering of the set elements into a list, as

    \begin{equation*} a_0, a_1, a_2, \ldots, a_n \end{equation*}
    can simply be turned into

    \begin{equation*} a_0 \le a_1 \le a_2 \le \cdots \le a_n \text{,} \end{equation*}
    and vice versa.

    Question \(\PageIndex{1}\)

    If \(A\) is a finite, totally ordered set, what does the corresponding Hasse diagram look like?

    The answer to this question is contained in Remark \(\PageIndex{1}\).

    Fact \(\PageIndex{1}\)

    A partial order on a finite set is total if and only if its Hasse diagram forms a single vertical line.

    Example \(\PageIndex{7}\): A totally ordered finite set.

    Figure \(\PageIndex{1}\) exhibits the Hasse diagram for the total order \(\mathord{\mid}\) on the set \(\{2,4,8,16,32\}\text{,}\) though we have drawn the diagram on a slant from the vertical to be make it easier to see the entire diagram at a glance.

    clipboard_e22d9d0b4e3dd80d539bc24f27c6cf76f.png
    Figure \(\PageIndex{1}\): A Hasse diagram of a totally ordered set.

    This page titled 19.4: Total Orders is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform.