20.2: Addition and subtraction rules
- Page ID
- 83506
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)As usual in mathematics, breaking a big problem into smaller parts is a useful strategy.
Assume \(U\) is a finite set.
- If \(U = A_1 \sqcup A_2\text{,}\) then \(\vert U \vert = \vert A_1 \vert + \vert A_2 \vert\text{.}\)
- If \(U = A_1 \cup A_2\text{,}\) then \(\vert U \vert = \vert A_1 \vert + \vert A_2 \vert - \vert A_1 \cap A_2 \vert\text{.}\)
- Proof Idea.
-
After recalling the definition of disjoint union, Statement 1 should be obvious. To prove Statement 2, apply Statement 1 to the following disjoint unions:
\begin{align*} U & = A_1 \sqcup (A_2 \setminus A_1), & A_2 & = (A_2 \setminus A_1) \sqcup (A_1 \cap A_2). \end{align*}
Then combine the resulting equalities of cardinalities.
Statement 1 of Theorem \(\PageIndex{1}\) can be extended to a disjoint union of any number of subsets.
How many words of length \(3\) or less are there using alphabet \(\Sigma = \{ \alpha, \omega \}\text{?}\)
Solution
Write \(\Sigma ^{\ast}_{\le 3}\) to mean the set of words in alphabet \(\Sigma\) of length \(3\) or less. Then
\begin{equation*} \Sigma ^{\ast}_{\le 3} = \Sigma ^{\ast}_0 \sqcup \Sigma ^{\ast}_1 \sqcup \Sigma ^{\ast}_2 \sqcup \Sigma ^{\ast}_3 \text{,} \end{equation*}
so we can break into cases based on length and then apply the Addition Rule.
Count \(\Sigma ^{\ast}_0\).
There is only one word of length \(0\text{:}\) the empty word. So \(\vert \Sigma ^{\ast}_0 \vert = 1\text{.}\)
Count \(\Sigma ^{\ast}_1\).
There are only two words of length \(1\text{:}\) the single-letter words \(w_\alpha = \alpha\) and \(w_\omega = \omega\text{.}\) So \(\vert \Sigma ^{\ast}_1 \vert = 2\text{.}\)
Count \(\Sigma ^{\ast}_2\).
We can count be simply listing the elements:
\begin{equation*} \Sigma ^{\ast}_2 = \{ \alpha \alpha, \alpha \omega, \omega \alpha, \omega \omega \} \text{.} \end{equation*}
So \(\vert \Sigma ^{\ast}_2 \vert = 4\text{.}\)
Count \(\Sigma ^{\ast}_3\).
This time we will just use inductive reasoning. Each word in \(\Sigma ^{\ast}_2\) may be extended to a word in \(\Sigma ^{\ast}_3\) by appending either an \(\alpha\) or an \(\omega\) onto the end. So there must be twice as many words in \(\Sigma ^{\ast}_3\) as in \(\Sigma ^{\ast}_2\text{,}\) i.e. \(\vert \Sigma ^{\ast}_3 \vert = 8\text{.}\)
Total count.
Using the Addition Rule, we obtain the total by adding up our preliminary results:
\begin{equation*} \vert \Sigma ^{\ast}_{\le 3} \vert = 1 + 2 + 4 + 8 = 15 \text{.} \end{equation*}
Another common strategy in mathematics is to consider the opposite.
Assume \(U\) is a finite set. For every subset \(A \subseteq U\text{,}\) we have \(\vert A \vert = \vert U \vert - \vert A^C \vert \text{.}\)
- Proof Idea.
-
Since \(U = A \sqcup A^C \) is always true, simply apply Statement 1 of Theorem 20.2.1 to this disjoint union and rearrange to isolate \(\vert A \vert\text{.}\)
For alphabet \(\Sigma = \{a, b, c, \ldots, y, z\} \text{,}\) how many words in \(\Sigma ^{\ast}_2\) do not begin with the letter \(\mathrm{a}\text{?}\) It's much easier to count the number of words in \(\Sigma ^{\ast}_2\) that do begin with \(\mathrm{a}\text{,}\) as there are only \(26\) possibilities for the second letter.
Later in this chapter we will learn a rule that will allow us to easily calculate the total number of words in \(\Sigma ^{\ast}_2\) to be \(26^2\) (see Worked Example 20.3.6). Accepting this fact for the moment, we can then use the Subtraction Rule to compute
\begin{align*} \# \{ 2\text{-letter words not beginning with } \mathrm{a} \} & = \vert \Sigma ^{\ast}_2 \vert - \# \{ 2\text{-letter words beginning with } \mathrm{a} \}\\ & = 26^2 - 26 \\ & = 26 (26 - 1) \\ & = 26 \cdot 25 \text{.} \end{align*}