Skip to main content
Mathematics LibreTexts

23.2: Multinomial Coefficients

  • Page ID
    83518
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Theorem \(\PageIndex{1}\): Trinomial Theorem.

    The expansion of the trinomial \((x + y + z)^n\) is the sum of all possible products

    \begin{equation*} \dfrac{n!}{i! \, j!\, k!}\,x^i y^j z^k, \end{equation*}
    where \(0 \le i,j,k \le n\) such that \(i + j + k = n\text{.}\)

    Proof Idea.

    Similarly to the proof of the Binomial Theorem, write

    \begin{gather} (x + y + z)^n = (x + y + z) (x + y + z) \cdots (x + y + z) \text{,}\label{equation-multinomial-trinomial}\tag{\(\star\)} \end{gather}
    with \(n\) factors. To expand this out, we generalize the FOIL method: from each factor, choose either \(x\text{,}\) \(y\text{,}\) or \(z\text{,}\) then multiply all your choices together. For any such product, the powers on \(x\text{,}\) \(y\text{,}\) and \(z\) must sum to \(n\text{.}\) To get the final expansion, add the results of all possible such products.

    But we can collect terms that have the same exponent on each of \(x\text{,}\) \(y\text{,}\) and \(z\text{.}\) How many ways can we form a specific term \(x^i y^j z^k\text{,}\) for \(0 \le i,j,k \le n\) such that \(i + j + k = n\text{?}\) We have \(C^n_i\) ways to choose \(i\) factors from the right-hand side of (\(\star\)) from which to take \(x\text{,}\) then \(C^{n-i}_j\) ways to choose \(j\) factors from which to take \(y\text{.}\) But now from all remaining factors we must choose \(z\text{,}\) and there is only \(1\) way to do this. So the coefficient on \(x^i y^j z^k\) is

    \begin{equation*} \binom{n}{i} \binom{n-i}{j} = \left(\dfrac{n!}{i! (n-i)!}\right) \:\: \left(\dfrac{(n-i)!}{j! (n-i-j)!}\right) = \dfrac{n!}{i! \, j! \, k!}\text{.} \end{equation*}

    Alternative proof idea.

    Use the Binomial Theorem on \((x + (y + z))^n\text{,}\) then again on \((y + z)^k\) for each term \(C^n_k x^{n - k} (y + z)^k\text{.}\) (This would be very tedious!)

    Example \(\PageIndex{1}\): Expanding a trinomial.

    Determine the terms in the expansion of \((2 x + y - 3 z)^3\text{.}\)

    Solution

    First, rewrite

    \begin{equation*} (2 x + y - 3 z)^3 = ((2 x) + y + (-3 z))^3 \text{.} \end{equation*}
    So the terms in the expansion involve products

    \begin{equation*} (2 x)^i y^j (-3 z)^k \text{.} \end{equation*}
    We need to account for all triples of exponents \(i, j, k\) that sum to \(3\text{.}\)

    \(i\) \(j\) \(k\) \(n! \over i! \, j! \, k! \) term simplified
    \(3\) \(0\) \(0\) \(1\) \((2 x)^3 \) \(8 x^3 \)
    \(0\) \(3\) \(0\) \(1\) \(y^3 \) \(y^3 \)
    \(0\) \(0\) \(3\) \(1\) \((-3 x)^3 \) \(-27 z^3 \)
    \(2\) \(1\) \(0\) \(3\) \(3 (2 x)^2 y \) \(12 x^2y \)
    \(2\) \(0\) \(1\) \(3\) \(3 (2 x)^2 (-3 z) \) \(-36 x^2 z \)
    \(1\) \(2\) \(0\) \(3\) \(3 (2 x) y^2 \) \(6 x y^2 \)
    \(0\) \(2\) \(1\) \(3\) \(3 y^2 (-3 z) \) \(-9 y^2 z \)
    \(1\) \(0\) \(2\) \(3\) \(3 (2 x) (-3 z)^2 \) \(-54 x z^2 \)
    \(0\) \(1\) \(2\) \(3\) \(3 y (-3 z)^2 \) \(-9 y z^2 \)
    \(1\) \(1\) \(1\) \(3!\) \(6 (2 x) y (-3 z) \) \(-36 x y z \)

    Collecting this together, we have

    \begin{align*} & (2 x + y - 3 z)^3 \\ & = 8 x^3 + y^3 - 27 z^3 + 12 x^2y - 36 x^2 z \\ & + 6 x y^2 - 9 y^2 z - 54 x z^2 - 36 x y z \text{.} \end{align*}

    Example \(\PageIndex{2}\): Determining a specific coefficient in a trinomial expansion.

    Determine the coefficient on \(x^5 y^2 z^7\) in the expansion of \((x + y + z)^{14}\text{.}\)

    Solution

    Here we don't have any extra contributions to the coefficient from constants inside the trinomial, so using \(n=14\text{,}\) \(i = 5\text{,}\) \(j = 2\text{,}\) \(k = 7\text{,}\) the coefficient is simply

    \begin{equation*} \dfrac{14!}{5! \, 2! \, 7!} = \dfrac{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8} {5 \cdot 4 \cdot 3 \cdot 2 \cdot 2} = 14 \cdot 13 \cdot 11 \cdot 9 \cdot 4 = 72,072\text{.} \end{equation*}

    The pattern of the Binomial Theorem and Trinomial Theorem continues.

    Theorem \(\PageIndex{2}\): Multinomial Theorem.

    The expansion of \((x_1 + x_2 + \cdots + x_m)^n\) is the sum of all possible products

    \begin{equation*} \dfrac{n!}{i_1! \, i_2! \, \cdots \, i_m!} \, x_1^{i_1} x_2^{i_2} \cdots x_m^{i_m} \text{,} \end{equation*}
    where the exponents \(i_1, i_2, \ldots, i_n\) sum to \(n\text{.}\)

    Proof Idea.

    Use the same generalized FOIL method argument as in the Binomial and Trinomial Theorem proofs, and simplify the product of combination formulas obtained.

    Example \(\PageIndex{3}\): Determining a specific coefficient in a multinomial expansion.

    Determine the coefficient on \(x^2 y z^6\) in the expansion of \((3 x + 2 y + z^2 + 6)^8\text{.}\)

    Solution

    Rewriting

    \begin{equation*} (3 x + 2 y + z^2 + 6)^8 = ((3 x) + (2 y) + (z^2) + 6)^8 \text{,} \end{equation*}
    we see that the four terms in this multinomial are

    \begin{equation*} 3 x, \quad 2 y, \quad z^2, \quad 6 \text{.} \end{equation*}
    So what we really want to know is the total coefficient on the term involving

    \begin{equation*} (3 x)^2 (2 y)^1 (z^2)^3 6^2 \text{.} \end{equation*}
    The Multinomial Theorem tells us that there will be

    \begin{equation*} \dfrac{8!}{2! \, 1! \, 3! \, 2!} = 1,680 \end{equation*}
    such terms in the expansion of the multinomial. Therefore, we obtain the term

    \begin{equation*} (1,680) (3 x)^2 (2 y)^1 (z^2)^3 6^2 = (1,088,640) x^2 y z^6 \end{equation*}
    with a total coefficient of \(1,088,640\text{.}\)

    Definition: Multinomial Coefficient

    a number appearing as a coefficient in the expansion of \((x_1 + x_2 + \cdots + x_m)^n\)

    Definition: \(\binom{n}{i_1,i_2,\ldots,i_m}\)

    the coefficient on the term \(x_1^{i_1} x_2^{i_2} \cdots x_m^{i_m}\) in the expansion of \((x_1 + x_2 + \cdots + x_m)^n\text{,}\) where the exponents \(i_1, i_2, \ldots, i_m\) must sum to \(n\)

    Note

    • The Multinomial Theorem tells us \(\displaystyle \binom{n}{i_1,i_2,\ldots,i_m} = \dfrac{n!}{i_1! \, i_2! \, \cdots \, i_m!} \text{.}\)
    • In the case of a binomial expansion \((x_1 + x_2)^n\text{,}\) the term \(x_1^{i_1} x_2^{i_2}\) must have \(i_1 + i_2 = n\text{,}\) or \(i_2 = n - i_1\text{.}\) The Multinomial Theorem tells us that the coefficient on this term is

    \begin{equation*} \binom{n}{i_1,i_2} = \dfrac{n!}{i_1!i_2!} = \dfrac{n!}{ i_1! (n - i_1)!} = \binom{n}{i_1}. \end{equation*}
    Therefore, in the case \(m=2\text{,}\) the Multinomial Theorem reduces to the Binomial Theorem.


    This page titled 23.2: Multinomial Coefficients is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jeremy Sylvestre via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.