1.22: The Groups Um
- Page ID
- 83358
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Let \(m>0\). A residue class \([a]\in\mathbb{Z}_m\) is called a unit if there is another residue class \([b]\in\mathbb{Z}_m\) such that \([a][b]=[1]\). In this case \([a]\) and \([b]\) are said to be inverses of each other in \(\mathbb{Z}_m\).
Let \(m>0\). A residue class \([a]\in\mathbb{Z}_m\) is a unit if and only if \(\gcd(a,m)=1\).
Proof
Let \([a]\) be a unit. Then there is some \([b]\) such that \([a][b]=[1]\). Hence \([ab]=[1]\) so \(ab\equiv 1\pmod m\). So by Theorem 1.20.2, \(\gcd(a,m)=1\).
To prove the converse, let \(\gcd(a,m)=1\). Then by Theorem 1.20.1, there is an integer \(a^\ast\) such that \(aa^{\ast}\equiv 1\pmod m\). Hence, \([aa^\ast]=[1]\). So \([a][a^\ast]=[aa^\ast]=[1]\), and we can take \(b=a^\ast\).
We see from Theorem 1.20.6 that if \([a]=[b]\) (i.e., \(a\equiv b\pmod m\)) then \(\gcd(a,m)=1\Leftrightarrow\gcd(b,m)=1\). So in checking whether or not a residue class is a unit, we can use any representative of the class.
The elements \([1]\) and \([m-1]\) are always units in \(\mathbb{Z}_m\) (see Exercise \(\PageIndex{1}\)). The collection all units in \(\mathbb{Z}_m\) will be our next focus.
The set of all units in \(\mathbb{Z}_m\) is denoted by \(U_m\) and is called the group of units of \(\mathbb{Z}_m\). See Appendix C for the definition of a group.
Let \(m>0\), then \[U_m=\{[i]\mid 1\le i\le m\text{ and }\gcd(i,m)=1\}.\nonumber \]
Proof
We know that if \([a]\in\mathbb{Z}_m\) then \([a]=[i]\) where \(0\le i\le m-1\). If \(m=1\) then \(\mathbb{Z}_m=\mathbb{Z}_1=\{[0]\}=\{[1]\}\) and since \([1][1]=[1]\), \([1]\) is a unit, \(U_1=\{[1]\}\) and the theorem holds. If \(m\ge 2\), then \(\gcd(i,m)=1\) can only happen if \(1\le i\le m-1\), since \(\gcd(0,m)=\gcd(m,m)=m\ne 1\). So the theorem follows from Theorem \(\PageIndex{1}\) and the above remarks.
(\(U_m\) is a group\(^{1}\) under multiplication.)
- If \([a],[b]\in U_m\) then \([a][b]\in U_m\).
- For all \([a]\), \([b]\), \([c]\) in \(U_m\) we have \(([a][b])[c]=[a]([b][c])\).
- \([1][a]=[a][1]=[a]\) for all \([a]\in U_m\).
- For each \([a]\in U_m\) there is a \([b]\in U_m\) such that \([a][b]=[1]\).
- For all \([a],[b]\in U_m\) we have \([a][b]=[b][a]\).
Proof
Using Theorem \(\PageIndex{2}\) we see that \[\begin{split} U_{15} &=\{[1],[2],[4],[7],[8],[11],[13],[14]\} \\ &=\{[1],[2],[4],[7],[-7],[-4],[-2],[-1]\}. \end{split}\]
Note that using representatives for residue classes modulo \(15\) with the smallest possible absolute value simplifies multiplication somewhat. (It is easier to multiply by one of \(-1\), \(-2\), \(-4\) or \(-7\), usually, than to multiply by one of \(14\), \(13\), \(11\), or \(8\).) Rather than write out the entire multiplication table, we just find the inverse of each element of \(U_{15}\): \[\begin{aligned} [1][1] &=[1] \\ [2][-7] &=[2][8]=[1] \\ [4][4] &=[1] \\ [7][-2] &=[7][13]=[1] \\ [-4][-4] &=[11][11]=[1] \\ [-1][-1] &=[14][14]=[1].\end{aligned}\]
If \(m>0\), \[|U_m|=\phi(m),\nonumber \] where \(\phi\) denotes Euler’s totient function.
Recall that \(\phi\) was introduced in Section 1.15. Observe that
\(U_1\) | \(=\) | \(\{[1]\}\) | and | \(\phi(1)\) | \(=\) | \(1\) |
\(U_2\) | \(=\) | \(\{[1]\}\) | and | \(\phi(2)\) | \(=\) | \(2-1=1\) |
\(U_3\) | \(=\) | \(\{[1],[2]\}\) | and | \(\phi(3)\) | \(=\) | \(3-1=2\) |
\(U_4\) | \(=\) | \(\{[1],[3]\}\) | and | \(\phi(4)\) | \(=\) | \(2^2-2^1 = 2\) |
\(U_5\) | \(=\) | \(\{[1],[2],[3],[4]\}\) | and | \(\phi(5)\) | \(=\) | \(5-1=4\) |
\(U_6\) | \(=\) | \(\{[1],[5]\}\) | and | \(\phi(6)\) | \(=\) | \((2-1)(3-1)=2\) |
\(U_7\) | \(=\) | \(\{[1],[2],[3],[4],[5],[6]\}\) | and | \(\phi(7)\) | \(=\) | \(7-1=6\). |
Exercises
Given \(m \geq 2\), show that \([1]\) and \([m-1]\) are always units in \(\mathbb{Z}_m\).
(Hint: Use the fact that \([m-1]=[-1]\).)
Prove Theorem \(\PageIndex{3}\).
List the elements of \(U_7\) in at least two different ways (i.e., using two different sets of representatives for the names) and find the inverse of each element, as in Example \(\PageIndex{1}\).
Find the sets \(U_m\), for \(8\le m\le 20\). Note that \(|U_m|=\phi(m)\). Use Theorem 1.15.6 to calculate \(\phi(m)\) and check that you have the right number of elements for each set \(U_m\), \(8\le m\le 20\).
Using the fact that \([3]\) and \([19]\) are elements of \(U_{20}\), use addition and multiplication of residue classes (NOT subtraction or division, which we have not defined) to solve the congruences for \([x]\) below. Assume that the modulus is \(m=20\).
- \([3][x] + [11] = [4]\)
- \([19][x] + [2] = [7]\)
Footnotes
[1] Actually (1){(4) are all that is required for \(U_n\) to be a group. Property (5) says that \(U_n\) is an Abelian group. See Appendix C.