1.2: Algebraic Operations with Integers
- Page ID
- 28626
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
\(\newcommand{\RR}{\mathbb R}\)
\(\newcommand{\QQ}{\mathbb Q}\)
\(\newcommand{\ZZ}{\mathbb Z}\)
\(\newcommand{\Cc}{\mathcal C}\)
\(\newcommand{\Dd}{\mathcal D}\)
\(\newcommand{\Ee}{\mathcal E}\)
\(\newcommand{\Ff}{\mathcal F}\)
\(\newcommand{\Kk}{\mathcal K}\)
\(\newcommand{\Mm}{\mathcal M}\)
\(\newcommand{\Pp}{\mathcal P}\)
\(\newcommand{\ind}{\operatorname{ind}}\)
\(\newcommand{\ord}{\operatorname{ord}}\)
On \(\ZZ\), the set of integers, there are two basic binary operations, namely addition (denoted by \(+\)) and multiplication (denoted by \(\cdot\)), which satisfy the following well known properties:
- Commutativity of addition and multiplication \[\begin{aligned} \forall a,b\in\ZZ:\quad a+b&=b+a\\ a\cdot b&=b\cdot a\end{aligned}\]
- Associativity of addition and multiplication \[\begin{aligned} \forall a,b,c\in\ZZ:\quad (a+b)+c&=a+(b+c)\\ (a\cdot b)\cdot c&= a\cdot (b\cdot c)\end{aligned}\]
- Distributivity of multiplication over addition \[\begin{aligned} \forall a,b,c\in\ZZ:\quad a\cdot (b+c)=a\cdot b+a\cdot c.\end{aligned}\]
In the set \(\ZZ\) there are identity elements for the two operations \(+\) and \(\cdot\), and these are the elements \(0\) and \(1\) respectively, that satisfy the basic properties \[\begin{aligned} \forall a\in\ZZ:\quad a + 0 &= 0+a = a\\ a\cdot 1 &= 1\cdot a = a\ .\end{aligned}\]
The set \(\ZZ\) allows additive inverses for its elements, in the sense that for every \(a\in\ZZ\) there exists another integer in \(\ZZ\), denoted by \(-a\), such that \[a+(-a)=0.\] While for multiplication, only the integer \(1\) has a multiplicative inverse in the sense that 1 is the only integer \(a\) such that there exists another integer, denoted by \(a^{-1}\) or by \(\dfrac{1}{a}\), (namely \(1\) itself in this case) such that \[a\cdot a^{-1}=1.\]
From the operations of addition and multiplication one can define two other operations on \(\ZZ\), namely subtraction (denoted by \(-\)) and division (denoted by \(/\)). Subtraction is a binary operation on \(\ZZ\), i.e., defined for any two integers in \(\ZZ\), while division is not a binary operation and thus is defined only for some specific pairs of integers in \(\ZZ\). Subtraction and division are defined as follows:
- \(\forall a,b\in\ZZ\), \(a-b\) is defined to be \(a+(-b)\)
- Given \(a,b\in\ZZ\), where \(b\neq 0\), if \(\exists c\in\ZZ\) such that \(a=b\cdot c\) then \(\dfrac{a}{b}\) is defined to be \(c\).