Skip to main content
Mathematics LibreTexts

6.3: The Eigenfunction Expansion Method

  • Page ID
    106234
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In section 4.3.2 we saw generally how one can use the eigenfunctions of a differential operator to solve a nonhomogeneous boundary value problem. In this chapter we have seen that Sturm-Liouville eigenvalue problems have the requisite set of orthogonal eigenfunctions. In this section we will apply the eigenfunction expansion method to solve a particular nonhomogenous boundary value problem.

    Recall that one starts with a nonhomogeneous differential equation

    \[\mathcal{L} y=f \nonumber \]

    where \(y(x)\) is to satisfy given homogeneous boundary conditions. The method makes use of the eigenfunctions satisfying the eigenvalue problem

    \[\mathcal{L} \phi_{n}=-\lambda_{n} \sigma \phi_{n} \nonumber \]

    subject to the given boundary conditions. Then, one assumes that \(y(x)\) can be written as an expansion in the eigenfunctions,

    \[y(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x) \nonumber \]

    and inserts the expansion into the nonhomogeneous equation. This gives

    \[f(x)=\mathcal{L}\left(\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)\right)=-\sum_{n=1}^{\infty} c_{n} \lambda_{n} \sigma(x) \phi_{n}(x). \nonumber \]

    The expansion coefficients are then found by making use of the orthogonality of the eigenfunctions. Namely, we multiply the last equation by \(\phi_{m}(x)\) and integrate. We obtain

    \[\int_{a}^{b} f(x) \phi_{m}(x) d x=-\sum_{n=1}^{\infty} c_{n} \lambda_{n} \int_{a}^{b} \phi_{n}(x) \phi_{m}(x) \sigma(x) d x \nonumber \]

    Orthogonality yields

    \[\int_{a}^{b} f(x) \phi_{m}(x) d x=-c_{m} \lambda_{m} \int_{a}^{b} \phi_{m}^{2}(x) \sigma(x) d x \nonumber \]

    Solving for \(c_{m}\), we have

    \[c_{m}=-\dfrac{\int_{a}^{b} f(x) \phi_{m}(x) d x}{\lambda_{m} \int_{a}^{b} \phi_{m}^{2}(x) \sigma(x) d x} \nonumber \]

    Example \(\PageIndex{1}\)

    As an example, we consider the solution of the boundary value problem

    \[\left(x y^{\prime}\right)^{\prime}+\dfrac{y}{x} =\dfrac{1}{x}, \quad x \in[1, e], \label{6.23} \]

    \[y(1) =0=y(e) . \label{6.24} \]

    Solution

    This equation is already in self-adjoint form. So, we know that the associated Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunctions. We first determine this set. Namely, we need to solve

    \[\left(x \phi^{\prime}\right)^{\prime}+\dfrac{\phi}{x}=-\lambda \sigma \phi, \quad \phi(1)=0=\phi(e) . \label{6.25} \]

    Rearranging the terms and multiplying by \(x\), we have that

    \[x^{2} \phi^{\prime \prime}+x \phi^{\prime}+(1+\lambda \sigma x) \phi=0 . \nonumber \]

    This is almost an equation of Cauchy-Euler type. Picking the weight function \(\sigma(x)=\dfrac{1}{x}\), we have

    \[x^{2} \phi^{\prime \prime}+x \phi^{\prime}+(1+\lambda) \phi=0 . \nonumber \]

    This is easily solved. The characteristic equation is

    \[r^{2}+(1+\lambda)=0 . \nonumber \]

    One obtains nontrivial solutions of the eigenvalue problem satisfying the boundary conditions when \(\lambda>-1\). The solutions are

    \[\phi_{n}(x)=A \sin (n \pi \ln x), \quad n=1,2, \ldots \nonumber \]

    where \(\lambda_{n}=n^{2} \pi^{2}-1\)
    It is often useful to normalize the eigenfunctions. This means that one chooses \(A\) so that the norm of each eigenfunction is one. Thus, we have

    \[\begin{aligned}
    1 &=\int_{1}^{e} \phi_{n}(x)^{2} \sigma(x) d x \\
    &=A^{2} \int_{1}^{e} \sin (n \pi \ln x) \dfrac{1}{x} d x \\
    &=A^{2} \int_{0}^{1} \sin (n \pi y) d y=\dfrac{1}{2} A^{2}
    \end{aligned} \label{6.26} \]

    Thus, \(A=\sqrt{2}\)
    We now turn towards solving the nonhomogeneous problem, \(\mathcal{L} y=\dfrac{1}{x}\). We first expand the unknown solution in terms of the eigenfunctions,

    \[y(x)=\sum_{n=1}^{\infty} c_{n} \sqrt{2} \sin (n \pi \ln x) \nonumber \]

    Inserting this solution into the differential equation, we have

    \[\dfrac{1}{x}=\mathcal{L} y=-\sum_{n=1}^{\infty} c_{n} \lambda_{n} \sqrt{2} \sin (n \pi \ln x) \dfrac{1}{x} \nonumber \]

    Next, we make use of orthogonality. Multiplying both sides by \(\phi_{m}(x)= \sqrt{2} \sin (m \pi \ln x)\) and integrating, gives

    \[\lambda_{m} c_{m}=\int_{1}^{e} \sqrt{2} \sin (m \pi \ln x) \dfrac{1}{x} d x=\dfrac{\sqrt{2}}{m \pi}\left[(-1)^{m}-1\right] \nonumber \]

    Solving for \(c_{m}\), we have

    \[c_{m}=\dfrac{\sqrt{2}}{m \pi} \dfrac{\left[(-1)^{m}-1\right]}{m^{2} \pi^{2}-1} . \nonumber \]

    Finally, we insert our coefficients into the expansion for \(y(x)\). The solution is then

    \[y(x)=\sum_{n=1}^{\infty} \dfrac{2}{n \pi} \dfrac{\left[(-1)^{n}-1\right]}{n^{2} \pi^{2}-1} \sin (n \pi \ln (x)) . \nonumber \]


    This page titled 6.3: The Eigenfunction Expansion Method is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.