Skip to main content
Mathematics LibreTexts

7.3: Gamma Function

  • Page ID
    106239
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Another function that often occurs in the study of special functions is the Gamma function. We will need the Gamma function in the next section on Bessel functions.

    For \(x>0\) we define the Gamma function as

    \[\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t, \quad x>0 \label{7.36} \]

    The Gamma function is a generalization of the factorial function. In fact, we have

    \[\Gamma(1)=1 \nonumber \]

    and

    \[\Gamma(x+1)=x \Gamma(x). \nonumber \]

    The reader can prove this identity by simply performing an integration by parts. (See Problem 7.7.) In particular, for integers \(n \in Z^{+}\), we then have

    \[\Gamma(n+1)=n \Gamma(n)=n(n-1) \Gamma(n-2)=n(n-1) \cdots 2 \Gamma(1)=n !. \nonumber \]

    We can also define the Gamma function for negative, non-integer values of \(x\). We first note that by iteration on \(n \in Z^{+}\), we have

    \[\Gamma(x+n)=(x+n-1) \cdots(x+1) x \Gamma(x), \quad x<0, \quad x+n>0 \text {. } \nonumber \]

    Solving for \(\Gamma(x)\), we then find

    \[\Gamma(x)=\dfrac{\Gamma(x+n)}{(x+n-1) \cdots(x+1) x}, \quad-n<x<0 \nonumber \]

    Note that the Gamma function is undefined at zero and the negative integers.

    Example 7.7. We now prove that 

    \[\Gamma\left(\dfrac{1}{2}\right)=\sqrt{\pi} . \nonumber \]

    This is done by direct computation of the integral:

    \[\Gamma\left(\dfrac{1}{2}\right)=\int_{0}^{\infty} t^{-\dfrac{1}{2}} e^{-t} d t \nonumber \]

    Letting \(t=z^{2}\), we have

    \[\Gamma\left(\dfrac{1}{2}\right)=2 \int_{0}^{\infty} e^{-z^{2}} d z \nonumber \]

    Due to the symmetry of the integrand, we obtain the classic integral

    \[\Gamma\left(\dfrac{1}{2}\right)=\int_{-\infty}^{\infty} e^{-z^{2}} d z \nonumber \]

    which can be performed using a standard trick. Consider the integral

    \[I=\int_{-\infty}^{\infty} e^{-x^{2}} d x \nonumber \]

    Then,

    \[I^{2}=\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \nonumber \]

    Note that we changed the integration variable. This will allow us to write this product of integrals as a double integral:

    \[I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y . \nonumber \]

    This is an integral over the entire \(x y\)-plane. We can transform this Cartesian integration to an integration over polar coordinates. The integral becomes

    \[I^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \nonumber \]

    This is simple to integrate and we have \(I^{2}=\pi\). So, the final result is found by taking the square root of both sides:

    \[\Gamma\left(\dfrac{1}{2}\right)=I=\sqrt{\pi} . \nonumber \]

    We have seen that the factorial function can be written in terms of Gamma functions. One can write the even and odd double factorials as

    \[(2 n) ! !=2^{n} n !, \quad(2 n+1) ! !=\dfrac{(2 n+1) !}{2^{n} n !} \nonumber \]

    In particular, one can write

    \[\Gamma\left(n+\dfrac{1}{2}\right)=\dfrac{(2 n-1) ! !}{2^{n}} \sqrt{\pi} . \nonumber \]

    Another useful relation, which we only state, is

    \[\Gamma(x) \Gamma(1-x)=\dfrac{\pi}{\sin \pi x} . \nonumber \]


    This page titled 7.3: Gamma Function is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Russell Herman via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?