Skip to main content
Mathematics LibreTexts

1.6: Matrix Representation of Complex Numbers

  • Page ID
    96141
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In our studies of complex numbers, we noted that multiplication of a complex number by \(e^{iθ}\) rotates that complex number an angle \(θ\) in the complex plane. This leads to the idea that we might be able to represent complex numbers as matrices with \(e^{iθ}\) as the rotation matrix.

    Accordingly, we begin by representing \(e^{iθ}\) as the rotation matrix, that is,

    \[\begin{aligned}e^{i\theta}&=\left(\begin{array}{rr}\cos\theta&-\sin\theta \\ \sin\theta&\cos\theta\end{array}\right) \\ &=\cos\theta\left(\begin{array}{cc}1&0\\0&1\end{array}\right)+\sin\theta\left(\begin{array}{rr}0&-1\\1&0\end{array}\right).\end{aligned} \nonumber \]

    Since \(e^{iθ} = \cos θ + i \sin θ\), we are led to the matrix representations of the unit numbers as

    \[1=\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\quad i=\left(\begin{array}{rr}0&-1\\1&0\end{array}\right).\nonumber \]

    A general complex number \(z = x + iy\) is then represented as

    \[z=\left(\begin{array}{rr}x&-y\\y&x\end{array}\right).\nonumber \]

    The complex conjugate operation, where \(i → −i\), is seen to be just the matrix transpose.

    Example \(\PageIndex{1}\)

    Show that \(i^2=-1\) in the matrix representation.

    Solution

    We have

    \[i^2=\left(\begin{array}{rr}0&-1\\1&0\end{array}\right)\left(\begin{array}{rr}0&-1\\1&0\end{array}\right)=\left(\begin{array}{rr}-1&0\\0&-1\end{array}\right)=-\left(\begin{array}{cc}1&0\\0&1\end{array}\right)=-1.\nonumber \]

    Example \(\PageIndex{2}\)

    Show that \(z\overline{z}=x^2+y^2\) in the matrix representation.

    Solution

    We have

    \[z\overline{z}=\left(\begin{array}{rr}x&-y\\y&x\end{array}\right)\left(\begin{array}{rr}x&y\\-y&x\end{array}\right)=\left(\begin{array}{cc}x^2+y^2&0\\0&x^2+y^2\end{array}\right)=(x^2+y^2)\left(\begin{array}{cc}1&0\\0&1\end{array}\right)=(x^2+y^2).\nonumber \]

    We can now see that there is a one-to-one correspondence between the set of complex numbers and the set of all two-by-two matrices with equal diagonal elements and opposite signed off-diagonal elements. If you do not like the idea of \(\sqrt{-1}\), then just imagine the arithmetic of these two-by-two matrices!


    This page titled 1.6: Matrix Representation of Complex Numbers is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.