Skip to main content
Mathematics LibreTexts

1.4: Rotation Matrices and Orthogonal Matrices

  • Page ID
    96140
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    View Rotation Matrix on YouTube

    View Orthogonal Matrices on YouTube

    clipboard_e15cdc6c9afba1f7599a072c24a3b5498.png
    Figure \(\PageIndex{1}\): Rotating a vector in the \(x\)-\(y\) plane.

    Consider the two-by-two rotation matrix that rotates a vector through an angle \(θ\) in the \(x\)-\(y\) plane, shown above. Trigonometry and the addition formula for cosine and sine results in

    \[\begin{aligned} x'&=r\cos(\theta+\psi) \\ &=r(\cos\theta\cos\psi -\sin\theta\sin\psi )\\&=x\cos\theta-y\sin\theta \\ y'&=r\sin(\theta+\psi)\\&=r(\sin\theta\cos\psi+\cos\theta\sin\psi) \\ &=x\sin\theta+y\cos\theta.\end{aligned} \nonumber \]

    Writing the equations for \(x'\) and \(y'\) in matrix form, we have

    \[\left(\begin{array}{c}x'\\y'\end{array}\right)=\left(\begin{array}{rr}\cos\theta&-\sin\theta \\ \sin\theta&\cos\theta\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right).\nonumber \]

    The above two-by-two matrix is called a rotation matrix and is given by

    \[\text{R}_\theta =\left(\begin{array}{rr}\cos\theta&-\sin\theta \\ \sin\theta&\cos\theta\end{array}\right).\nonumber \]

    Example \(\PageIndex{1}\)

    Find the inverse of the rotation matrix \(\text{R}_\theta\).

    Solution

    The inverse of \(\text{R}_θ\) rotates a vector clockwise by \(θ\). To find \(\text{R}^{−1}_θ\), we need only change \(θ → −θ\):

    \[\text{R}_\theta^{-1}=\text{R}_{-\theta}=\left(\begin{array}{rr}\cos\theta&\sin\theta \\ -\sin\theta&\cos\theta\end{array}\right).\nonumber \]

    This result agrees with (1.4.4) since \(\det\text{ R}_\theta =1\).

    Notice that \(\text{R}^{−1}_θ = \text{R}^{\text{T}}_θ\). In general, a square \(n\)-by-\(n\) matrix \(\text{Q}\) with real entries that satisfies

    \[\text{Q}^{-1}=\text{Q}^{\text{T}}\nonumber \]

    is called an orthogonal matrix. Since \(\text{QQ}^{\text{T}} = \text{I}\) and \(\text{Q}^{\text{T}}\text{Q} = \text{I}\), and since \(\text{QQ}^{\text{T}}\) multiplies the rows of \(\text{Q}\) against themselves, and \(\text{Q}^{\text{T}}\text{Q}\) multiplies the columns of \(\text{Q}\) against themselves, both the rows of \(\text{Q}\) and the columns of \(\text{Q}\) must form an orthonormal set of vectors (normalized and mutually orthogonal). For example, the column vectors of \(\text{R}\), given by

    \[\left(\begin{array}{c}\cos\theta \\ \sin\theta\end{array}\right),\quad\left(\begin{array}{r}-\sin\theta \\ \cos\theta\end{array}\right),\nonumber \]

    are orthonormal.

    It is clear that rotating a vector around the origin doesn’t change its length. More generally, orthogonal matrices preserve inner products. To prove, let \(\text{Q}\) be an orthogonal matrix and \(x\) a column vector. Then

    \[(\text{Qx})^{\text{T}}(\text{Qx})=\text{x}^{\text{T}}\text{Q}^{\text{T}}\text{Qx}=\text{x}^{\text{T}}\text{x}.\nonumber \]

    The complex matrix analogue of an orthogonal matrix is a unitary matrix \(\text{U}\). Here, the relationship is

    \[\text{U}^{-1}=\text{U}^\dagger .\nonumber \]

    Like Hermitian matrices, unitary matrices also play a fundamental role in quantum physics.


    This page titled 1.4: Rotation Matrices and Orthogonal Matrices is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.