Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 6 results
  • https://math.libretexts.org/Courses/Coastline_College/Math_C285%3A_Linear_Algebra_and_Diffrential_Equations_(Tran)/04%3A_R/4.11%3A_Orthogonality
    In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions f...In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions for the span of a set of vectors and a linear independent set of vectors.
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Applied_Linear_Algebra_and_Differential_Equations_(Chasnov)/02%3A_II._Linear_Algebra/01%3A_Matrices/1.04%3A_Rotation_Matrices_and_Orthogonal_Matrices
    Trigonometry and the addition formula for cosine and sine results in \[\begin{aligned} x'&=r\cos(\theta+\psi) \\ &=r(\cos\theta\cos\psi -\sin\theta\sin\psi )\\&=x\cos\theta-y\sin\theta \\ y'&=r\sin(\t...Trigonometry and the addition formula for cosine and sine results in \[\begin{aligned} x'&=r\cos(\theta+\psi) \\ &=r(\cos\theta\cos\psi -\sin\theta\sin\psi )\\&=x\cos\theta-y\sin\theta \\ y'&=r\sin(\theta+\psi)\\&=r(\sin\theta\cos\psi+\cos\theta\sin\psi) \\ &=x\sin\theta+y\cos\theta.\end{aligned} \nonumber \] Writing the equations for \(x'\) and \(y'\) in matrix form, we have \[\left(\begin{array}{c}x'\\y'\end{array}\right)=\left(\begin{array}{rr}\cos\theta&-\sin\theta \\ \sin\theta&\cos\theta\…
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/A_First_Course_in_Linear_Algebra_(Kuttler)/04%3A_R/4.11%3A_Orthogonality
    In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions f...In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions for the span of a set of vectors and a linear independent set of vectors.
  • https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/A_First_Journey_Through_Linear_Algebra/04%3A_R/4.11%3A_Orthogonality
    In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions f...In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions for the span of a set of vectors and a linear independent set of vectors.
  • https://math.libretexts.org/Courses/Reedley_College/Differential_Equations_and_Linear_Algebra_(Zook)/04%3A_R/4.08%3A_Orthogonality
    In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions f...In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions for the span of a set of vectors and a linear independent set of vectors.
  • https://math.libretexts.org/Courses/Lake_Tahoe_Community_College/A_First_Course_in_Linear_Algebra_(Kuttler)/04%3A_R/4.11%3A_Orthogonality
    In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions f...In this section, we examine what it means for vectors (and sets of vectors) to be orthogonal and orthonormal. First, it is necessary to review some important concepts. You may recall the definitions for the span of a set of vectors and a linear independent set of vectors.

Support Center

How can we help?