Skip to main content
Mathematics LibreTexts

10.2: Solution by Diagonalization

  • Page ID
    96185
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Another way to view the problem of coupled first-order linear odes is from the perspective of matrix diagonalization. With

    \[\dot{x}=A x \nonumber \]

    we suppose A can be diagonalized using

    \[\mathrm{S}^{-1} \mathrm{AS}=\Lambda, \nonumber \]

    where \(\Lambda\) is the diagonal eigenvalue matrix, and \(S\) holds the eigenvectors. We can change variables in Equation \ref{10.7} using

    \[x=S y \nonumber \]

    and obtain

    \[\text { Sy் }=\text { ASy. } \nonumber \]

    Multiplication on the left by \(\mathrm{S}^{-1}\) and using Equation \ref{10.8} results in

    \[\begin{aligned} \dot{\mathrm{y}} &=\mathrm{S}^{-1} \mathrm{ASy} \\ &=\Lambda \mathrm{y} . \end{aligned} \nonumber \]

    The first-order differential equations in the \(y\)-variables are now uncoupled and can be immediately solved, and the x-variables can be recovered using Equation \ref{10.9}.

    Example: Solve the previous example

    \[\frac{d}{d t}\left(\begin{array}{l} x_{1} \\ x_{2} \end{array}\right)=\left(\begin{array}{ll} 1 & 1 \\ 4 & 1 \end{array}\right)\left(\begin{array}{l} x_{1} \\ x_{2} \end{array}\right) \nonumber \]

    by the diagonalization method.

    The eigenvalues and eigenvectors are known, and we have

    \[\Lambda=\left(\begin{array}{rr} 3 & 0 \\ 0 & -1 \end{array}\right), \quad S=\left(\begin{array}{rr} 1 & 1 \\ 2 & -2 \end{array}\right) \nonumber \]

    and the uncoupled \(y\)-equations are given by

    \[\dot{y}_{1}=3 y_{1}, \quad \dot{y}_{2}=-y_{2}, \nonumber \]

    with solution

    \[y_{1}(t)=c_{1} e^{3 t}, \quad y_{2}=c_{2} e^{-t} \nonumber \]

    Transforming back to the \(x\)-variables using Equation \ref{10.9}, we have

    \[\begin{aligned} \left(\begin{array}{l} x_{1} \\ x_{2} \end{array}\right) &=\left(\begin{array}{rr} 1 & 1 \\ 2 & -2 \end{array}\right)\left(\begin{array}{c} c_{1} e^{3 t} \\ c_{2} e^{-t} \end{array}\right) \\ &=\left(\begin{array}{c} c_{1} e^{3 t}+c_{2} e^{-t} \\ 2 c_{1} e^{3 t}-2 c_{2} e^{-t} \end{array}\right) \end{aligned} \nonumber \]

    which agrees with solution Equation \ref{10.6}.


    This page titled 10.2: Solution by Diagonalization is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.