Skip to main content
$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 6.4.2: Uniqueness

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Sufficiently regular solutions of the initial-boundary value problem (6.4.1)-(6.4.3) are uniquely determined since from

\begin{eqnarray*}
c_t&=&D\triangle c\ \ \mbox{in}\ \Omega\times (0,\infty)\\
c(x,0)&=&0\\
\frac{\partial c}{\partial n}&=& 0\ \ \mbox{on}\ \partial\Omega\times (0,\infty).
\end{eqnarray*}
it follows that for each $$\tau>0$$
\begin{eqnarray*}
0&=&\int_0^\tau\ \int_\Omega\ \left(c_tc-D(\triangle c)c\right)\ dxdt\\
&=&\int_\Omega\ \int_0^\tau\ \frac{1}{2}\frac{\partial}{\partial t}(c^2)\ dtdx+D\int_\Omega\ \int_0^\tau\ |\nabla_xc|^2\ dxdt\\
&=&\frac{1}{2}\int_\Omega\ c^2(x,\tau)\ dx+D\int_\Omega\ \int_0^\tau\ |\nabla_xc|^2\ dxdt.
\end{eqnarray*}

## Contributors

• Integrated by Justin Marshall.