Skip to main content
Mathematics LibreTexts

1.2: The Exponential Function and the Natural Logarithm

  • Page ID
    90385
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The transcendental number \(e\), approximately \(2.71828\), is defined as \[e=\underset{n\to\infty}{\lim}\left(1+\frac{1}{n}\right)^{n}.\nonumber\]

    The exponential function \(\exp (x) = e^x\) and natural logarithm \(\ln x\) are inverse functions satisfying \[e^{\ln x}=x,\quad\ln e^x=x.\nonumber\]

    The usual rules of exponents apply:

    \[e^xe^y=e^{x+y},\quad e^x/e^y=e^{x-y},\quad (e^x)^p=e^{px}.\nonumber\]

    The corresponding rules for the logarithmic function are \[\ln(xy)=\ln x+\ln y,\quad \ln (x/y)=\ln x-\ln y,\quad \ln x^p=p\ln x.\nonumber\]


    This page titled 1.2: The Exponential Function and the Natural Logarithm is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.