Skip to main content
Mathematics LibreTexts

1.9: Indefinite Integrals of Elementary Functions

  • Page ID
    90392
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    From our known derivatives of elementary functions, we can determine some simple indefinite integrals. The power rule gives us \[\int x^n dx=\frac{x^{n+1}}{n+1}+c,\quad n\neq -1.\nonumber\]

    When \(n = −1\), and \(x\) is positive, we have \[\int\frac{1}{x}dx=\ln x+c.\nonumber\]

    If \(x\) is negative, using the chain rule we have \[\frac{d}{dx}\ln (-x)=\frac{1}{x}.\nonumber\]

    Therefore, since \[|x|=\left\{\begin{array}{ll}-x&\text{if }x<0; \\ x&\text{if }x>0,\end{array}\right.\nonumber\] we can generalize our indefinite integral to strictly positive or strictly negative \(x\):

    \[\int\frac{1}{x}dx=\ln |x|+c.\nonumber\]

    Trigonometric functions can also be integrated:

    \[\int\cos xdx=\sin x+c,\quad\int\sin xdx=-\cos x+c.\nonumber\]

    Easily proved identities are an addition rule:

    \[\int (f(x)+g(x))dx=\int f(x)dx+\int g(x)dx;\nonumber\] and multiplication by a constant:

    \[\int Af(x)dx=A\int f(x)dx.\nonumber\]

    This permits integration of functions such as \[\int (x^2+7x+2)dx=\frac{x^3}{3}+\frac{7x^2}{2}+2x+c,\nonumber\] and \[\int (5\cos x+\sin x)dx=5\sin x-\cos x+c.\nonumber\]


    This page titled 1.9: Indefinite Integrals of Elementary Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.