A.3.1: Section 3.1 Answers
( \newcommand{\kernel}{\mathrm{null}\,}\)
1. y1=1.450000000,y2=2.085625000,y3=3.079099746
2. y1=1.200000000,y2=1.440415946,y3=1.729880994
3. y1=1.900000000,y2=1.781375000,y3=1.646612970
4. y1=2.962500000,y2=2.922635828,y3=2.880205639
5. y1=2.513274123,y2=1.814517822,y3=1.216364496
6.
x | h=0.1 | h=0.05 | h=0.025 | Exact |
1.0 | 48.298147362 | 51.492825643 | 53.076673685 | 54.647937102 |
7.
x | h=0.1 | h=0.05 | h=0.025 | Exact |
2.0 | 1.390242009 | 1.370996758 | 1.361921132 | 1.353193719 |
8.
x | h=0.05 | h=0.025 | h=0.0125 | Exact |
1.50 | 7.886170437 | 8.852463793 | 9.548039907 | 10.500000000 |
9.
x | h=0.1 | h=0.05 | h=0.025 | h=0.1 | h=0.05 | h=0.025 |
3.0 | 1.469458241 | 1.462514486 | 1.459217010 | 0.3210 | 0.1537 | 0.0753 |
Approximate Solutions | Residuals |
10.
x | h=0.1 | h=0.05 | h=0.025 | h=0.1 | h=0.05 | h=0.025 |
2.0 | 0.473456737 | 0.483227470 | 0.487986391 | −0.3129 | −0.1563 | −0.0781 |
Approximate Solutions | Residuals |
11.
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 0.691066797 | 0.676269516 | 0.668327471 | 0.659957689 |
12.
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
2.0 | −0.772381768 | −0.761510960 | −0.756179726 | −0.750912371 |
13.
Euler's Method | ||||
x | h=0.1 | h=0.05 | h=0.025 | Exact |
1.0 | 0.538871178 | 0.593002325 | 0.620131525 | 0.647231889 |
Euler semilinear Method | ||||
x | h=0.1 | h=0.05 | h=0.025 | Exact |
1.0 | 0.647231889 | 0.647231889 | 0.647231889 | 0.647231889 |
Applying variation of parameters to the given initial value problem yields y=ue−3x, where (A) u′=7,u(0)=6. Since u″, Euler’s method yields the exact solution of (A). Therefore the Euler semilinear method produces the exact solution of the given problem
14.
Euler's Method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
3.0 | 12.804226135 | 13.912944662 | 14.559623055 | 15.282004826 |
Euler semilinear method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
3.0 | 15.354122287 | 15.317257705 | 15.299429421 | 15.282004826 |
15.
Euler's method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
2.0 | 0.867565004 | 0.885719263 | 0.895024772 | 0.904276722 |
Euler's semilinear method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
2.0 | 0.569670789 | 0.720861858 | 0.808438261 | 0.904276722 |
16.
Euler's method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
3.0 | 0.922094379 | 0.945604800 | 0.956752868 | 0.967523153 |
Euler semilinear method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
3.0 | 0.993954754 | 0.980751307 | 0.974140320 | 0.967523153 |
17.
Euler's method | ||||
x | h=0.0500 | h=0.0250 | h=0.0125 | "Exact" |
1.50 | 0.319892131 | 0.330797109 | 0.337020123 | 0.343780513 |
Euler semilinear method | ||||
x | h=0.0500 | h=0.0250 | h=0.0125 | "Exact" |
1.50 | 0.305596953 | 0.323340268 | 0.333204519 | 0.343780513 |
18.
Euler's method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
2.0 | 0.754572560 | 0.743869878 | 0.738303914 | 0.732638628 |
Euler semilinear method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
2.0 | 0.722610454 | 0.727742966 | 0.730220211 | 0.732638628 |
19.
Euler's method | ||||
x | h=0.0500 | h=0.0250 | h=0.0125 | "Exact" |
1.50 | 2.175959970 | 2.210259554 | 2.227207500 | 2.244023982 |
Euler semilinear method | ||||
x | h=0.0500 | h=0.0250 | h=0.0125 | "Exact" |
1.50 | 2.117953342 | 2.179844585 | 2.211647904 | 2.244023982 |
20.
Euler's method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 0.032105117 | 0.043997045 | 0.050159310 | 0.056415515 |
Euler's semilinear method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 0.056020154 | 0.056243980 | 0.056336491 | 0.056415515 |
21.
Euler's method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 28.987816656 | 38.426957516 | 45.367269688 | 54.729594761 |
Euler's semilinar method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 54.709134946 | 54.724150485 | 54.728228015 | 54.729594761 |
22.
Euler's method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
3.0 | 1.361427907 | 1.361320824 | 1.361332589 | 1.361383810 |
Euler's semilinar method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
3.0 | 1.291345518 | 1.326535737 | 1.344004102 | 1.361383810 |