A.3.2: Section 3.2 Answers
( \newcommand{\kernel}{\mathrm{null}\,}\)
1. y1=1.542812500,y2=2.421622101,y3=4.208020541
2. y1=1.220207973,y2=1.489578775.y3=1.819337186
3. y1=1.890687500,y2=1.763784003,y3=1.622698378
4. y1=2.961317914,y2=2.920132727,y3=2.876213748
5. y1=2.478055238,y2=1.844042564,y3=1.313882333
6.
x | h=0.1 | h=0.05 | h=0.025 | Exact |
1.0 | 56.134480009 | 55.003390448 | 54.734674836 | 54.647937102 |
7.
x | h=0.1 | h=0.05 | h=0.025 | Exact |
2.0 | 1.353501839 | 1.353288493 | 1.353219485 | 1.353193719 |
8.
x | h=0.5 | h=0.025 | h=0.0125 | Exact |
1.50 | 10.141969585 | 10.396770409 | 10.472502111 | 10.500000000 |
9.
x | h=0.1 | h=0.05 | h=0.025 | h=0.1 | h=0.05 | h=0.025 |
3.0 | 1.455674816 | 1.455935127 | 1.456001289 | −0.00818 | −0.00207 | −0.000518 |
Approximate Solutions | Residuals |
10.
x | h=0.1 | h=0.05 | h=0.025 | h=0.1 | h=0.05 | h=0.025 |
2.0 | 0.492862999 | 0.492709931 | 0.492674855 | 0.00335 | 0.000777 | 0.000187 |
Approximate Solutions | Residuals |
11.
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 0.660268159 | 0.660028505 | 0.659974464 | 0.659957689 |
12.
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
2.0 | −0.749751364 | −0.750637632 | −0.750845571 | −0.750912371 |
13. Applying variation of parameters to the given initial value problem y=ue−3x, where (A)u′=1−2x,u(0)=2. Since u‴=0, the improved Euler method yields the exact solution of (A). Therefore the improved Euler semilinear method produces the exact solution of the given problem.
Improved Euler method | ||||
x | h=0.1 | h=0.05 | h=0.025 | Exact |
1.0 | 0.105660401 | 0.100924399 | 0.099893685 | 0.099574137 |
Improved Euler semilinar method | ||||
x | h=0.1 | h=0.05 | h=0.025 | Exact |
1.0 | 0.099574137 | 0.099574137 | 0.099574137 | 0.099574137 |
14.
Improved Euler method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
3.0 | 15.107600968 | 15.234856000 | 15.269755072 | 15.282004826 |
Improved Euler semilinar method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
3.0 | 15.285231726 | 15.282812424 | 15.282206780 | 15.282004826 |
15.
Improved Euler method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
2.0 | 0.924335375 | 0.907866081 | 0.905058201 | 0.904276722 |
Improved Euler semilinear method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
2.0 | 0.969670789 | 0.920861858 | 0.908438261 | 0.904276722 |
16.
Improved Euler method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
3.0 | 0.967473721 | 0.967510790 | 0.967520062 | 0.967523153 |
Improved Euler semilinear method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
3.0 | 0.967473721 | 0.967510790 | 0.967520062 | 0.967523153 |
17.
Improved Euler method | ||||
x | h=0.0500 | h=0.0250 | h=0.0125 | "Exact" |
1.50 | 0.349176060 | 0.345171664 | 0.344131282 | 0.343780513 |
Improved Euler semilinear method | ||||
x | h=0.0500 | h=0.0250 | h=0.0125 | "Exact" |
1.50 | 0.349350206 | 0.345216894 | 0.344142832 | 0.343780513 |
18.
Improved Euler method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
2.0 | 0.732679223 | 0.732721613 | 0.732667905 | 0.732638628 |
Improved Euler semilinear method | ||||
x | h=0.2 | h=0.1 | h=0.05 | "Exact" |
2.0 | 0.732166678 | 0.732521078 | 0.732609267 | 0.732638628 |
19.
Improved Euler method | ||||
x | h=0.0500 | h=0.0250 | h=0.0125 | "Exact" |
1.50 | 2.247880315 | 2.244975181 | 2.244260143 | 2.244023982 |
Improved Euler semilinear method | ||||
x | h=0.0500 | h=0.0250 | h=0.0125 | "Exact" |
1.50 | 2.248603585 | 2.245169707 | 2.244310465 | 2.244023982 |
20.
Improved Euler method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 0.059071894 | 0.056999028 | 0.056553023 | 0.056415515 |
Improved Euler semilinear method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 0.056295914 | 0.056385765 | 0.056408124 | 0.056415515 |
21.
Improved Euler method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 50.534556346 | 53.483947013 | 54.391544440 | 54.729594761 |
Improved Euler semilinear method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 54.709041434 | 54.724083572 | 54.728191366 | 54.729594761 |
22.
Improved Euler method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
3.0 | 1.361395309 | 1.361379259 | 1.361382239 | 1.361383810 |
Improved Euler semilinear method | ||||
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
3.0 | 1.375699933 | 1.364730937 | 1.362193997 | 1.361383810 |
23.
x | h=0.1 | h=0.05 | h=0.025 | Exact |
2.0 | 1.349489056 | 1.352345900 | 1.352990822 | 1.353193719 |
24.
x | h=0.1 | h=0.05 | h=0.025 | Exact |
2.0 | 1.350890736 | 1.352667599 | 1.353067951 | 1.353193719 |
25.
x | h=0.05 | h=0.025 | h=0.0125 | Exact |
1.50 | 10.133021311 | 10.391655098 | 10.470731411 | 10.500000000 |
26.
x | h=0.05 | h=0.025 | h=0.0125 | Exact |
1.50 | 10.136329642 | 10.393419681 | 10.470731411 | 10.500000000 |
27.
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 0.660846835 | 0.660189749 | 0.660016904 | 0.659957689 |
28.
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
1.0 | 0.660658411 | 0.660136630 | 0.660002840 | 0.659957689 |
29.
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
2.0 | −0.750626284 | −0.750844513 | −0.750895864 | −0.751331499 |
30.
x | h=0.1 | h=0.05 | h=0.025 | "Exact" |
2.0 | −0.750335016 | −0.750775571 | −0.750879100 | −0.751331499 |