Skip to main content
Mathematics LibreTexts

10.E: Center Manifold Theory (Exericses)

  • Page ID
    24194
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Consider the following autonomous vector field on the plane:

    \(\dot{x} = x^{2}y-x^3\),

    \(\dot{y} = y+x^3, (x, y) \in \mathbb{R}^2\).

    Determine the stability of (x, y) = (0, 0) using center manifold theory.

    Exercise \(\PageIndex{2}\)

    Consider the following autonomous vector field on the plane:

    \(\dot{x} = x^2\),

    \(\dot{y} = y+x^2, (x, y) \in \mathbb{R}^2\).

    Determine the stability of (x, y) = (0, 0) using center manifold theory. Does the fact that solutions of \(\dot{x} = x^2\) "blow up in finite time" influence your answer (why or why not)?

    Exercise \(\PageIndex{3}\)

    Consider the following autonomous vector field on the plane:

    \(\dot{x} = x+y^2\),

    \(\dot{y} = -2x^2+2xy^2, (x, y) \in \mathbb{R}^2\).

    Show that \(y = x^2\) is an invariant manifold. Show that there is a trajectory connecting (0, 0) to (1, 1), i.e. a heteroclinic trajectory.

    Exercise \(\PageIndex{4}\)

    Consider the following autonomous vector field on \(\mathbb{R}^3\):

    \(\dot{x} = y\),

    \(\dot{y} = -x-x^{2}y\),

    \(\dot{z} = -z+xz^2, (x, y, z) \in \mathbb{R}^3\)

    Determine the stability of (x, y, z) = (0, 0, 0) using center manifold theory.

    Exercise \(\PageIndex{5}\)

    Consider the following autonomous vector field on \(\mathbb{R}^3\):

    \(\dot{x} = y\),

    \(\dot{y} = -x-x^{2}y+zxy\),

    \(\dot{z} = -z+xz^2, (x, y, z) \in \mathbb{R}^3\).

    Determine the stability of (x, y, z) = (0, 0, 0) using center manifold theory.

    Exercise \(\PageIndex{6}\)

    Consider the following autonomous vector field on \(\mathbb{R}^3\):

    \(\dot{x} = y\),

    \(\dot{y} = -x+zy^2\),

    \(\dot{z} = -z+xz^2, (x, y, z) \in \mathbb{R}^3\).

    Determine the stability of (x, y, z) = (0, 0, 0) using center manifold theory.


    This page titled 10.E: Center Manifold Theory (Exericses) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Stephen Wiggins via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.