2.4: Nonlinear Equations in \(\mathbb{R}^n\)
- Page ID
- 2137
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Here we consider the nonlinear differential equation
\begin{equation}
\label{nonlinear2}
F(x,z,p)=0,
\end{equation}
where
$$
x=(x_1,\ldots,x_n),\ z=u(x):\ \Omega\subset\mathbb{R}^n\mapsto\mathbb{R}^1,\ p=\nabla u.
$$
The following system of \(2n+1\) ordinary differential equations is called characteristic system.
\begin{eqnarray*}
x'(t)&=&\nabla_pF\\
z'(t)&=&p\cdot\nabla_pF\\
p'(t)&=&-\nabla_xF-F_zp.
\end{eqnarray*}
Let
$$
x_0(s)=(x_{01}(s),\ldots,x_{0n}(s)),\ s=(s_1,\ldots,s_{n-1}),
$$
be a given regular (n-1)-dimensional \(C^2\)-hypersurface in \(\mathbb{R}^n\), i. e., we assume
$$
\mbox{rank}\frac{\partial x_0(s)}{\partial s}=n-1.
$$
Here \(s\in D\) is a parameter from an \((n-1)\)-dimensional parameter domain \(D\).
For example, \(x=x_0(s)\) defines in the three dimensional case a regular surface in \(\mathbb{R}^3\).
Assume
$$
z_0(s):\ D\mapsto\mathbb{R}^1,\ p_0(s)=(p_{01}(s),\ldots,p_{0n}(s))
$$
are given sufficiently regular functions.
The \((2n+1)\)-vector
$$
(x_0(s),z_0(s),p_0(s))
$$
is called initial strip manifold and the condition
$$
\frac{\partial z_0}{\partial s_l}=\sum_{i=1}^{n-1}p_{0i}(s)\frac{\partial x_{0i}}{\partial s_l},
$$
\(l=1,\ldots,n-1\), strip condition.
The initial strip manifold is said to be non-characteristic if
$$
\det\left(\begin{array}{llcl}F_{p_1}&F_{p_2}&\cdots & F_{p_n}\\
\frac{\partial x_{01}}{\partial s_1}&\frac{\partial x_{02}}{\partial s_1}&\cdots & \frac{\partial x_{0n}}{\partial s_1}\\
... & ... & ... & ...\\
\frac{\partial x_{01}}{\partial s_{n-1}}&\frac{\partial x_{02}}{\partial s_{n-1}}&\cdots & \frac{\partial x_{0n}}{\partial s_{n-1}}\end{array}\right)\not=0,
$$
where the argument of \(F_{p_j}\) is the initial strip manifold.
Initial value problem of Cauchy. Seek a solution \(z=u(x)\) of the differential equation (\ref{nonlinear2}) such that the initial manifold is a subset of \(\{(x,u(x),\nabla u(x)):\ x\in \Omega\}\).
As in the two dimensional case we have under additional regularity assumptions
Theorem 2.3. Suppose the initial strip manifold is not characteristic and satisfies differential equation (\ref{nonlinear2}), that is,
\(F(x_0(s),z_0(s),p_0(s))=0\). Then there is a neighborhood of the initial manifold \((x_0(s),z_0(s))\) such that there exists a unique solution of the Cauchy initial value problem.
Sketch of proof. Let
$$
x=x(s,t),\ z=z(s,t),\ p=p(s,t)
$$
be the solution of the characteristic system and let
$$
s=s(x),\ t=t(x)
$$
be the inverse of \(x=x(s,t)\) which exists in a neighborhood of \(t=0\). Then, it turns out that
$$
z=u(x):= z(s_1(x_1,\ldots,x_n),\ldots,s_{n-1}(x_1,\ldots,x_n),t(x_1,\ldots,x_n))
$$
is the solution of the problem.
Contributors and Attributions
Integrated by Justin Marshall.