Skip to main content
Mathematics LibreTexts

4.2: Higher Dimensions

  • Page ID
    2149
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Set

    $$
    \Box u=u_{tt}-c^2\triangle u,\ \ \triangle\equiv\triangle_x=\partial^2/\partial x_1^2+\ldots+
    \partial^2/\partial x_n^2,
    \]

    and consider the initial value problem

    \begin{eqnarray}
    \label{wavehigher1}
    \Box u&=&0\ \ \ \mbox{in} \mathbb{R}^n\times\mathbb{R}^1\\
    \label{wavehigher2}
    u(x,0)&=&f(x)\\
    \label{wavehigher3}
    u_t(x,0)&=&g(x),
    \end{eqnarray}

    where \(f\) and \(g\) are given \(C^2(\mathbb{R}^2)\)-functions.

    By using spherical means and the above d'Alembert formula we will derive a formula for the solution of this initial value problem.

    Method of Spherical means

    Define the spherical mean for a \(C^2\)-solution \(u(x,t)\) of the initial value problem by

    \begin{equation}
    \label{mean1}
    M(r,t)=\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}\ u(y,t)\ dS_y,
    \end{equation}

    where

    $$
    \omega_n=(2\pi)^{n/2}/\Gamma(n/2)
    \]

    is the area of the n-dimensional sphere, \(\omega_n r^{n-1}\) is the area of a sphere with radius \(r\).

    From the mean value theorem of the integral calculus we obtain the function \(u(x,t)\) for which we are looking at by
    \begin{equation}
    \label{uM}
    u(x,t)=\lim_{r\to0} M(r,t).
    \end{equation}
    Using the initial data, we have
    \begin{eqnarray}
    \label{mean2}
    M(r,0)&=&\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}\ f(y)\ dS_y=:F(r)\\
    \label{mean3}
    M_t(r,0)&=&\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}\ g(y)\ dS_y=:G(r),
    \end{eqnarray}
    which are the spherical means of \(f\) and \(g\).

    The next step is to derive a partial differential equation for the spherical mean. From definition (\ref{mean1}) of the spherical mean we obtain, after the mapping \(\xi=(y-x)/r\), where \(x\) and \(r\) are fixed,
    $$
    M(r,t)=\frac{1}{\omega_n }\int_{\partial B_1(0)}\ u(x+r\xi,t)\ dS_\xi.
    $$
    It follows
    \begin{eqnarray*}
    M_r(r,t)&=&\frac{1}{\omega_n }\int_{\partial B_1(0)}\ \sum_{i=1}^n u_{y_i}(x+r\xi,t)\xi_i\ dS_\xi\\
    &=&\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}\ \sum_{i=1}^n u_{y_i}(y,t)\xi_i\ dS_y.
    \end{eqnarray*}
    Integration by parts yields
    $$
    \frac{1}{\omega_n r^{n-1}}\int_{B_r(x)}\ \sum_{i=1}^n u_{y_iy_i}(y,t)\ dy
    $$
    since $\xi\equiv (y-x)/r$ is the exterior normal at \(\partial B_r(x)\). Assume \(u\) is a solution of the wave equation, then
    \begin{eqnarray*}
    r^{n-1}M_r&=&\frac{1}{c^2\omega_n}\int_{B_r(x)}\ u_{tt}(y,t)\ dy\\
    &=&\frac{1}{c^2\omega_n }\int_0^r\ \int_{\partial B_c(x)}\ u_{tt}(y,t)\ dS_ydc.
    \end{eqnarray*}
    The previous equation follows by using spherical coordinates. Consequently
    \begin{eqnarray*}
    (r^{n-1}M_r)_r&=&\frac{1}{c^2\omega_n}\int_{\partial B_r(x)}\ u_{tt}(y,t)\ dS_y\\
    &=&\frac{r^{n-1}}{c^2}\frac{\partial^2}{\partial t^2}\left(\frac{1}{\omega_n r^{n-1}} \int_{\partial B_r(x)}\ u(y,t)\ dS_y\right)\\
    &=&\frac{r^{n-1}}{c^2}M_{tt}.
    \end{eqnarray*}
    Thus we arrive at the differential equation
    $$
    (r^{n-1}M_r)_r=c^{-2}r^{n-1}M_{tt},
    $$
    which can be written as
    \begin{equation}
    \label{EPD}
    M_{rr}+\frac{n-1}{r}M_r=c^{-2}M_{tt}.
    \end{equation}
    This equation (\ref{EPD}) is called Euler-Poisson-Darboux equation.

    Contributors and Attributions


    This page titled 4.2: Higher Dimensions is shared under a not declared license and was authored, remixed, and/or curated by Erich Miersemann.

    • Was this article helpful?