4.2: Higher Dimensions
- Page ID
- 2149
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Set
$$
\Box u=u_{tt}-c^2\triangle u,\ \ \triangle\equiv\triangle_x=\partial^2/\partial x_1^2+\ldots+
\partial^2/\partial x_n^2,
\]
and consider the initial value problem
\begin{eqnarray}
\label{wavehigher1}
\Box u&=&0\ \ \ \mbox{in} \mathbb{R}^n\times\mathbb{R}^1\\
\label{wavehigher2}
u(x,0)&=&f(x)\\
\label{wavehigher3}
u_t(x,0)&=&g(x),
\end{eqnarray}
where \(f\) and \(g\) are given \(C^2(\mathbb{R}^2)\)-functions.
By using spherical means and the above d'Alembert formula we will derive a formula for the solution of this initial value problem.
Method of Spherical means
Define the spherical mean for a \(C^2\)-solution \(u(x,t)\) of the initial value problem by
\begin{equation}
\label{mean1}
M(r,t)=\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}\ u(y,t)\ dS_y,
\end{equation}
where
$$
\omega_n=(2\pi)^{n/2}/\Gamma(n/2)
\]
is the area of the n-dimensional sphere, \(\omega_n r^{n-1}\) is the area of a sphere with radius \(r\).
From the mean value theorem of the integral calculus we obtain the function \(u(x,t)\) for which we are looking at by
\begin{equation}
\label{uM}
u(x,t)=\lim_{r\to0} M(r,t).
\end{equation}
Using the initial data, we have
\begin{eqnarray}
\label{mean2}
M(r,0)&=&\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}\ f(y)\ dS_y=:F(r)\\
\label{mean3}
M_t(r,0)&=&\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}\ g(y)\ dS_y=:G(r),
\end{eqnarray}
which are the spherical means of \(f\) and \(g\).
The next step is to derive a partial differential equation for the spherical mean. From definition (\ref{mean1}) of the spherical mean we obtain, after the mapping \(\xi=(y-x)/r\), where \(x\) and \(r\) are fixed,
$$
M(r,t)=\frac{1}{\omega_n }\int_{\partial B_1(0)}\ u(x+r\xi,t)\ dS_\xi.
$$
It follows
\begin{eqnarray*}
M_r(r,t)&=&\frac{1}{\omega_n }\int_{\partial B_1(0)}\ \sum_{i=1}^n u_{y_i}(x+r\xi,t)\xi_i\ dS_\xi\\
&=&\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}\ \sum_{i=1}^n u_{y_i}(y,t)\xi_i\ dS_y.
\end{eqnarray*}
Integration by parts yields
$$
\frac{1}{\omega_n r^{n-1}}\int_{B_r(x)}\ \sum_{i=1}^n u_{y_iy_i}(y,t)\ dy
$$
since $\xi\equiv (y-x)/r$ is the exterior normal at \(\partial B_r(x)\). Assume \(u\) is a solution of the wave equation, then
\begin{eqnarray*}
r^{n-1}M_r&=&\frac{1}{c^2\omega_n}\int_{B_r(x)}\ u_{tt}(y,t)\ dy\\
&=&\frac{1}{c^2\omega_n }\int_0^r\ \int_{\partial B_c(x)}\ u_{tt}(y,t)\ dS_ydc.
\end{eqnarray*}
The previous equation follows by using spherical coordinates. Consequently
\begin{eqnarray*}
(r^{n-1}M_r)_r&=&\frac{1}{c^2\omega_n}\int_{\partial B_r(x)}\ u_{tt}(y,t)\ dS_y\\
&=&\frac{r^{n-1}}{c^2}\frac{\partial^2}{\partial t^2}\left(\frac{1}{\omega_n r^{n-1}} \int_{\partial B_r(x)}\ u(y,t)\ dS_y\right)\\
&=&\frac{r^{n-1}}{c^2}M_{tt}.
\end{eqnarray*}
Thus we arrive at the differential equation
$$
(r^{n-1}M_r)_r=c^{-2}r^{n-1}M_{tt},
$$
which can be written as
\begin{equation}
\label{EPD}
M_{rr}+\frac{n-1}{r}M_r=c^{-2}M_{tt}.
\end{equation}
This equation (\ref{EPD}) is called Euler-Poisson-Darboux equation.
Contributors and Attributions
Integrated by Justin Marshall.