4.3: Inhomogeneous Equations
- Page ID
- 2150
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Here we consider the initial value problem
\begin{eqnarray}
\label{inh1}
\Box u&=&w(x,t)\ \ \mbox{on}\ x\in\mathbb{R}^n,\ t\in\mathbb{R}^1\\
\label{inh2}
u(x,0)&=&f(x)\\
\label{inh3}
u_t(x,0)&=&g(x),
\end{eqnarray}
where \(\Box u:=u_{tt}-c^2\triangle u\). We assume \(f\in C^3\), \(g\in C^2\) and \(w\in C^1\), which are given.
Set \(u=u_1+u_2\), where \(u_1\) is a solution of problem (\ref{inh1})-(\ref{inh3}) with \(w:=0\) and \(u_2\) is the solution where \(f=0\) and \(g=0\) in (\ref{inh1})-(\ref{inh3}). Since we have explicit solutions \(u_1\) in the cases \(n=1\), \(n=2\) and \(n=3\), it remains to solve
\begin{eqnarray}
\label{duhu2gl}
\Box u&=&w(x,t)\ \ \mbox{on}\ x\in\mathbb{R}^n,\ t\in\mathbb{R}^1\\
\label{duhu2in1}
u(x,0)&=&0\\
\label{duhu2in2}
u_t(x,0)&=&0.
\end{eqnarray}
The following method is called Duhamel's principle which can be considered as a generalization of the method of variations of constants in the theory of ordinary differential equations.
To solve this problem, we make the ansatz
\begin{equation}
\label{duh1}
u(x,t)=\int_0^t\ v(x,t,s)\ ds,
\end{equation}
where \(v\) is a function satisfying
\begin{equation}
\label{duh2}
\Box v=0\ \ \mbox{for all}\ s
\end{equation}
and
\begin{equation}
\label{duh3}
v(x,s,s)=0.
\end{equation}
From ansatz (\ref{duh1}) and assumption (\ref{duh3}) we get
\begin{eqnarray}
u_t&=&v(x,t,t)+\int_0^t\ v_t(x,t,s)\ ds,\nonumber\\
\label{duh4}
&=&\int_0^t\ v_t(x,t,s).
\end{eqnarray}
It follows \(u_t(x,0)=0\). The initial condition \(u(x,t)=0\) is satisfied because of the ansatz (\ref{duh1}). From (\ref{duh4}) and ansatz (\ref{duh1}) we see that
\begin{eqnarray*}
u_{tt}&=&v_t(x,t,t)+\int_0^t\ v_{tt}(x,t,s)\ ds,\\
\triangle_x u&=&\int_0^t\ \triangle_x v(x,t,s)\ ds.
\end{eqnarray*}
Therefore, since \(u\) is an ansatz for (\ref{duhu2gl})-(\ref{duhu2in2}),
\begin{eqnarray*}
u_{tt}-c^2\triangle_x u&=&v_t(x,t,t)+\int_0^t(\Box v)(x,t,s)\ ds\\
&=&w(x,t).
\end{eqnarray*}
Thus necessarily \(v_t(x,t,t)=w(x,t)\), see (\ref{duh2}). We have seen that the ansatz provides a solution of (\ref{duhu2gl})-(\ref{duhu2in2}) if for all \(s\)
\begin{equation}
\label{duh5}
\Box v=0,\ \ v(x,s,s)=0,\ \ v_t(x,s,s)=w(x,s).
\end{equation}
Let \(v^*(x,t,s)\) be a solution of
\begin{equation}
\label{duh6}
\Box v=0,\ \ v(x,0,s)=0,\ \ v_t(x,0,s)=w(x,s),
\end{equation}
then
$$v(x,t,s):=v^*(x,t-s,s)\]
is a solution of (\ref{duh5}).
In the case \(n=3\), where \(v^*\) is given by, see Theorem 4.2,
$$v^*(x,t,s)=\frac{1}{4\pi c^2 t}\int_{\partial B_{ct}(x)}\ w(\xi,s)\ dS_\xi.\]
Then
\begin{eqnarray*}
v(x,t,s)&=&v^*(x,t-s,s)\\
&=&\frac{1}{4\pi c^2 (t-s)}\int_{\partial B_{c(t-s)}(x)}\ w(\xi,s)\ dS_\xi.
\end{eqnarray*}
from ansatz (\ref{duh1}) it follows
\begin{eqnarray*}
u(x,t)&=&\int_0^t\ v(x,t,s)\ ds\\
&=&\frac{1}{4\pi c^2}\int_0^t\ \int_{\partial B_{c(t-s)}(x)}\ \frac{w(\xi,s)}{t-s}\ dS_\xi ds.
\end{eqnarray*}
Changing variables by \(\tau=c(t-s)\) yields
\begin{eqnarray*}
u(x,t)&=&\frac{1}{4\pi c^2}\int_0^{ct}\ \int_{\partial B_{\tau}(x)}\ \frac{w(\xi,t-\tau/c)}{\tau}\ dS_\xi d\tau\\
&=&\frac{1}{4\pi c^2} \int_{ B_{ct}(x)}\ \frac{w(\xi,t-r/c)}{r}\ d\xi,
\end{eqnarray*}
where \(r=|x-\xi|\).
Formulas for the cases \(n=1\) and \(n=2\) follow from formulas for the associated homogeneous equation with inhomogeneous initial values for these cases.
Theorem 4.4. The solution of
$$\Box u=w(x,t),\ \ u(x,0)=0,\ \ u_t(x,0)=0,$$
where \(w\in C^1\), is given by:
Case \(n=3\):
$$u(x,t)=\frac{1}{4\pi c^2} \int_{ B_{ct}(x)}\ \frac{w(\xi,t-r/c)}{r}\ d\xi,$$
where \(r=|x-\xi|\), \(x=(x_1,x_2,x_3)\), \(\xi=(\xi_1,\xi_2,\xi_3)\).
Case \(n=2\):
$$u(x,t)=\frac{1}{4\pi c}\int_0^t\ \left( \int_{ B_{c(t-\tau)}(x)}\ \frac{w(\xi,\tau)}{\sqrt{c^2(t-\tau)^2-r^2}}\ d\xi\right)\ d\tau,$$
\(x=(x_1,x_2)\), \(\xi=(\xi_1,\xi_2)\).
Case \(n=1\):
$$u(x,t)=\frac{1}{2c}\int_0^t\ \left(\int_{x-c(t-\tau)}^{x+c(t-\tau)}\ w(\xi,\tau)\ d\xi\right)\ d\tau.$$
Remark. The integrand on the right in formula for \(n=3\) is called retarded potential. The integrand is taken not at \(t\), it is taken at an earlier time \(t-r/c\).
Contributors and Attributions
Integrated by Justin Marshall.