6.E: Exercises for Chapter 6
- Page ID
- 278
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Calculational Exercises
1. Define the map \(T: \mathbb{R}^2 \to \mathbb{R}^2\) by \(T(x,y)=(x+y,x)\).
- Show that \(T\) is linear.
- Show that \(T\) is surjective.
- Find \(\dim\left(\text{null}\left(T\right)\right)\).
- Find the matrix for \(T\) with respect to the canonical basis of \(\mathbb{R}^2\).
- Find the matrix for \(T\) with respect to the canonical basis for the domain \(\mathbb{R}^2\) and the basis \(((1,1),(1,-1))\) for the target space \(\mathbb{R}^2\).
- Show that the map \(F:\mathbb{R}^2 \to \mathbb{R}^2\) given by \(F(x,y)=(x+y,x+1)\) is not linear.
2. Let \(T\in\mathcal{L}(\mathbb{R}^2)\) be defined by
\[ T\begin{pmatrix} x\\ y\end{pmatrix} = \begin{pmatrix}y\\ -x\end{pmatrix},\quad \mbox{ for all } \begin{pmatrix}x\\ y\end{pmatrix}\in \mathbb{R}^2.\]
- Show that \(T\) is surjective.
- Find \(\dim\left(\text{null}\left(T\right)\right)\).
- Find the matrix for \(T\) with respect to the canonical basis of \(\mathbb{R}^2\).
- Show that the map \(F:\mathbb{R}^2 \to \mathbb{R}^2\) given by \(F(x,y)=(x+y,x+1)\) is not linear.
3. Consider the complex vector spaces \(\mathbb{C}^2\) and \(\mathbb{C}^3\) with their canonical bases, and define \(S \in \mathcal{L}(\mathbb{C}^3,\mathbb{C}^2)\) be the linear map defined by \(S(v) = A v, \forall v \in \mathbb{C}^{3}\), where \(A\) is the matrix
\[ A = M(S) = \begin{pmatrix} i &1 &1 \\ 2i& -1& -1 \end{pmatrix} .\]
Find a basis for \(null(S).\)
4. Give an example of a function \(f: \mathbb{R}^{2} \to \mathbb{R}\) having
the property that
\[ \forall a \in \mathbb{R}, \forall v \in \mathbb{R}^2, f(av) = a f(v) \]
but such that \(f\) is not a linear map.
5. Show that the linear map \(T: \mathbb{F}^{4} \to \mathbb{F}^{2}\) is surjective if
\[ \mbox{null}(T) = \{(x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbb{F}^{4} \ | \ x_{1} = 5 x_{2}, x_{3} = 7 x_{4} \}. \]
6. Show that no linear map \(T: \mathbb{F}^{5} \to \mathbb{F}^{2}\) can
have as its null space the set
\[ \{(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) \in \mathbb{F}^{5} \ | \ x_{1} = 3 x_{2}, x_{3} = x_{4} = x_{5} \}. \]
7. Describe the set of solutions \(x=(x_1,x_2,x_3)\in\mathbb{R}^3\) of the system of equations
\[ \left. \begin{array}{rl} x_1-x_2+x_3&=0 \\ x_1+2x_2 +x_3&=0 \\ 2x_1+x_2+2x_3&=0 \end{array} \right\}. \]
Proof-Writing Exercises
1. Let \(V\) and \(W\) be vector spaces over \(\mathbb{F}\) with \(V\) finite-dimensional, and let \(U\) be any
subspace of \(V\) . Given a linear map \(S \in \cal{L}(U,W),\) prove that there exists a linear map
\(T \in \cal{L}(V,W)\) such that, for every \(u \in U, S(u) = T(u).\)
2. Let \(V\) and \(W\) be vector spaces over \(\mathbb{F},\) and suppose that \(T \in \cal{L}(V,W)\) is injective.
Given a linearly independent list \((v_1,\ldots , v_n)\) of vectors in \(V\), prove that the
list \((T(v_1), \ldots ,T(v_n))\) is linearly independent in \(W.\)
3. Let \(U, V,\) and \(W\) be vector spaces over \(\mathbb{F},\) and suppose that the linear maps \(S \in \cal{L}(U, V )\)
and \(T \in \cal{L}(V,W)\) are both injective. Prove that the composition map \(T \circ S\) is injective.
4. Let \(V\) and \(W\) be vector spaces over \(\mathbb{F},\) and suppose that \(T \in \cal{L}(V,W)\) is surjective.
Given a spanning list \((v_1,\ldots , v_n)\) for \(V\) , prove that
\[span(T(v_1),\ldots ,T(v_n)) = W.\]
5. Let \(V\) and \(W\) be vector spaces over \(\mathbb{F}\) with \(V\) finite-dimensional. Given \(T \in \cal{L}(V,W),\)
prove that there is a subspace \(U\) of \(V\) such that
\[U \cap null(T) = \{0\} \rm{~and~} range(T) = \{T(u) | u \in U\}.\]
6. Let \(V\) be a vector space over \(\mathbb{F},\) and suppose that there is a linear map \(T \in \cal{L}(V, V )\)
such that both \(null(T)\) and \(range(T)\) are finite-dimensional subspaces of \(V\) . Prove that
\(V\) must also be finite-dimensional.
7. Let \(U, V,\) and \(W\) be finite-dimensional vector spaces over \(\mathbb{F}\) with \(S \in \cal{L}(U, V )\) and
\(T \in \cal{L}(V,W).\) Prove that
\[dim(null(T \circ S)) \leq dim(null(T)) + dim(null(S)).\]
8. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\) with \(S, T \in \cal{L}(V, V).\) Prove that
\(T \circ S\) is invertible if and only if both \(S\) and \(T\) are invertible.
9. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\) with \(S, T \in \cal{L}(V, V ),\) and denote by
I the identity map on \(V\) . Prove that \(T \circ S = I\) if and only if \(S \circ T = I.\)
Contributors
- Isaiah Lankham, Mathematics Department at UC Davis
- Bruno Nachtergaele, Mathematics Department at UC Davis
- Anne Schilling, Mathematics Department at UC Davis
Both hardbound and softbound versions of this textbook are available online at WorldScientific.com.