Skip to main content
Mathematics LibreTexts

9.E: Exercises for Chapter 9

  • Page ID
    262
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Calculational Exercises

    1. Let \( (e_1 , e_2 , e_3) \) be the canonical basis of \( \mathbb{R^3} \) , and define
    \[ f_1 = e_1 + e_2 + e_3, ~~~~~~~~~f_2 = e_2 + e_3, ~~~~~~~~~f_3 = e_3 . \]
    (a) Apply the Gram-Schmidt process to the basis \( (f_1 , f_2 , f_3) \).
    (b) What do you obtain if you instead applied the Gram-Schmidt process to the basis \( (f_3 , f_2 , f_1) \)?

    2. Let \( C[−\pi, \pi] = \{f : [−\pi, \pi] \rightarrow R \mid f ~\rm{is~ continuous}\} \) denote the inner product space of continuous real-valued functions defined on the interval \( [−\pi, \pi] \subset R\), with inner product given by

    \[ \inner{f}{g} = \int_{-\pi}^{\pi} f(x)g(x)dx, ~\rm{for~every} ~ f,g \in C[-\pi,\pi]. \]

    Then, given any positive integer \( n \in \mathbb{Z_+} \), verify that the set of vectors

    \[ \left\{ \frac{1}{\sqrt{2\pi}},\frac{sin(x)}{\sqrt{\pi}}, \frac{sin(2x)}{\sqrt{\pi}}, \ldots , \frac{sin(nx)}{\sqrt{\pi}}, \frac{cos(x)}{\sqrt{\pi}}, \frac{cos(2x)}{\sqrt{\pi}}, \ldots, \frac{cos(nx)}{\sqrt{\pi}} \right\} \] is orthonormal.

    3. Let \( \mathbb{R_2}[x] \) denote the inner product space of polynomials over \(\mathbb{R}\) having degree at most two, with inner product given by

    \[ \inner{f}{g} = \int_{0}^{1} f(x)g(x)dx, ~\rm{for~every} ~ f,g \in \mathbb{R_2}[x] . \]

    Apply the Gram-Schmidt procedure to the standard basis \(\{1, x, x^2 \} \) for \(\mathbb{R_2}[x] \) in order to produce an orthonormal basis for \(\mathbb{R_2}[x]\) .

    4. Let \(v_1 , v_2 , v_3 \in \mathbb{R^3}\) be given by \(v_1 = (1, 2, 1), v_2 = (1, −2, 1)\), and \(v_3 = (1, 2, −1)\).
    Apply the Gram-Schmidt procedure to the basis \((v_1 , v_2 , v_3 ) \) of \(\mathbb{R^3}\) , and call the resulting orthonormal basis \((u_1 , u_2, u_3)\).

    5. Let \(P \subset \mathbb{R^3} \) be the plane containing 0 perpendicular to the vector \((1, 1, 1)\). Using the standard norm, calculate the distance of the point \((1, 2, 3)\) to \(P\) .

    6. Give an orthonormal basis for \(null(T )\), where \(T \in \cal L(\mathbb{C^4} ) \) is the map with canonical matrix

    \[ \left( \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 &1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{array} \right) \]

    Proof-Writing Exercises

    1. Let \(V\) be a finite-dimensional inner product space over \( \mathbb{F}\). Given any vectors \(u, v \in V\) , prove that the following two statements are equivalent:

    \( (a) \inner{u}{v} = 0 \)

    \((b) \norm{u} \leq \norm{u + \alpha v}\) for every \(\alpha \in \mathbb{F} \).

    2. Let \(n \in \mathbb{Z_+}\) be a positive integer, and let \(a_1 , \ldots , a_n , b_1 , \ldots , b_n \in \mathbb{R} \) be any collection of \(2n\) real numbers. Prove that

    \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n ka_{k}^2 \right) \left( \sum_{k=1}^n \frac{b_k^2}{k} \right) \]

    3. Prove or disprove the following claim:
    Claim. There is an inner product \( \inner{\cdot}{\cdot}\) on \(\mathbb{R^2}\) whose associated norm \(\norm{\cdot}\) is given by the formula
    \[ \norm{(x_1 , x_2 )} = |x_1| + |x_2 | \]
    for every vector \( (x_1 , x_2 ) \in \mathbb{R^2}\) , where \( | \cdot | \) denotes the absolute value function on \( \mathbb{R} \).


    4. Let \(V\) be a finite-dimensional inner product space over \(\mathbb{R}\). Given \( u, v \in V \), prove that
    \[ \inner{u}{v} = \frac{ \norm{u+v}^2 - \norm{u-v}^2}{ 4}\]

    5. Let \(V\) be a finite-dimensional inner product space over \(\mathbb{C}\). Given \( u, v \in V\) , prove that

    \[ \inner{u}{v} = \frac{ \norm{u+v}^2 - \norm{u-v}^2}{ 4} + \frac{ \norm{u+iv}^2 - \norm{u-iv}^2}{ 4}i.\]

    6. Let V be a finite-dimensional inner product space over \(\mathbb{F}\), and let \(U\) be a subspace of \(V\). Prove that the orthogonal complement \(U^\perp\) of \(U\) with respect to the inner product \( \inner{\cdot}{\cdot}\) on \(V\) satisfies

    \[ dim(U^\perp ) = dim(V ) − dim(U).\]

    7. Let \(V\) be a finite-dimensional inner product space over \(\mathbb{F}\), and let \(U\) be a subspace of \(V\). Prove that \(U = V\) if and only if the orthogonal complement \(U^\perp\) of \(U\) with respect to the inner product \(\inner{\cdot}{\cdot}\) on \(V\) satisfies \(U^\perp = \{0\}\).

    8. Let \(V\) be a finite-dimensional inner product space over \(\mathbb{F}\), and suppose that \(P \in \cal{L}(V) \) is a linear operator on \(V\) having the following two properties:

    (a) Given any vector \(v \in V , P (P(v)) = P (v)\). I.e., \(P^2 = P\).

    (b) Given any vector \(u \in null(P) \) and any vector \(v \in range(P ), \inner{u}{v} = 0\).

    Prove that \(P\) is an orthogonal projection.

    9. Prove or give a counterexample: For any \(n \geq 1\) and \(A \in \mathbb{C}^{n \times n} \), one has

    \[null(A) = (range(A))^\perp .\]

    10. Prove or give a counterexample: The Gram-Schmidt process applied to an an orthonormal list of vectors reproduces that list unchanged.


    This page titled 9.E: Exercises for Chapter 9 is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.