Skip to main content
Mathematics LibreTexts

11.2: Normal operators

  • Page ID
    306
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Normal operators are those that commute with their own adjoint. As we will see, this includes many important examples of operations.

    Definition 11.2.1. We call \(T\in\mathcal{L}(V)\) normal if \(TT^*=T^*T\).

    Given an arbitrary operator \(T \in \mathcal{L}(V)\), we have that \(TT^*\neq T^*T\) in general. However, both \(TT^*\) and \(T^*T\) are self-adjoint, and any self-adjoint operator \(T\) is normal. We now give a different characterization for normal operators in terms of norms.

    Proposition 11.2.2. Let \(V\) be a complex inner product space, and suppose that \(T\in\mathcal{L}(V)\) satisfies

    \begin{equation*}
    \inner{Tv}{v} = 0, \quad \text{for all \(v\in V\).}
    \end{equation*}
    Then \(T=0\).

    Proof. You should be able to verify that
    \begin{equation*}
    \begin{split}
    \inner{Tu}{w} = \frac{1}{4} & \left\{ \inner{T(u+w)}{u+w} - \inner{T(u-w)}{u-w}\right.\\
    & \left.+i \inner{T(u+iw)}{u+iw} - i \inner{T(u-iw)}{u-iw} \right\} .
    \end{split}
    \end{equation*}
    Since each term on the right-hand side is of the form \(\inner{Tv}{v}\), we obtain 0 for each \(u,w\in V\).
    Hence \(T=0\).

    Proposition 11.2.3. Let \(T\in \mathcal{L}(V)\). Then \(T\) is normal if and only if

    \begin{equation*}
    \norm{Tv} = \norm{T^* v}, \quad \text{for all \(v\in V\).}
    \end{equation*}

    Proof. Note that

    \begin{equation*}
    \begin{split}
    \text{\(T\) is normal} & \Longleftrightarrow T^*T-TT^* =0\\
    & \Longleftrightarrow \inner{(T^*T-TT^*)v}{v} = 0, \quad \text{for all \(v\in V\)}\\
    & \Longleftrightarrow \inner{TT^* v}{v} = \inner{T^*T v}{v}, \quad \text{for all \(v\in V\)}\\
    & \Longleftrightarrow \norm{Tv}^2 = \norm{T^*v}^2, \quad \text{for all \(v\in V\).}
    \end{split}
    \end{equation*}

    Corollary 11.2.4. Let \(T \in \mathcal{L}(V)\) be a normal operator.

    1. \(\kernel(T) = \kernel(T^*)\).
    2. If \(\lambda\in\mathbb{C}\) is an eigenvalue of \(T\), then \(\overline{\lambda}\) is an eigenvalue of \(T^*\) with the same eigenvector.
    3. If \(\lambda,\mu\in\mathbb{C}\) are distinct eigenvalues of \(T\) with associated eigenvectors \(v,w\in V\), respectively, then \(\inner{v}{w}=0\).
    Proof. Note that Part~1 follows from Proposition 11.2.3 and the positive definiteness of the norm.

    To prove Part~2, first verify that if \(T\) is normal, then \(T-\lambda I\) is also normal with \((T-\lambda I)^* = T^* - \overline{\lambda} I\). Therefore, by Proposition 11.2.3, we have
    \begin{equation*}
    0 = \norm{(T-\lambda I) v} = \norm{(T-\lambda I)^* v} = \norm{(T^*-\overline{\lambda} I)v},
    \end{equation*}
    and so \(v\) is an eigenvector of \(T^*\) with eigenvalue \(\overline{\lambda}\).

    Using Part~2, note that

    \begin{equation*}
    (\lambda-\mu)\inner{v}{w} = \inner{\lambda v}{w} - \inner{v}{\overline{\mu} w}
    = \inner{Tv}{w} - \inner{v}{T^* w} = 0.
    \end{equation*}

    Since \(\lambda-\mu\neq 0\) it follows that \(\inner{v}{w}=0\), proving Part~3.


    This page titled 11.2: Normal operators is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.