Skip to main content
Mathematics LibreTexts

11.E: Exercises for Chapter 11

  • Page ID
    312
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Calculational Exercises

    1. Consider \( \mathbb{R}^3 \)with two orthonormal bases: the canonical basis \( e = (e_1 , e_2 , e_3) \) and the basis \(f = (f_1 , f_2 , f_3) \), where
    \[ f1 = \frac{1}{\sqrt{3}}(1,1,1), f_2 = \frac{1}{\sqrt{6}}(1,-2,1), f_3 = \frac{1}{\sqrt{2}}(1,0,-1). \]

    Find the canonical matrix, A, of the linear map \(T \in \cal{L}(\mathbb{R}^3) \) with eigenvectors \(f_1 , f_2 , f_3 \) and eigenvalues 1, 1/2, −1/2, respectively.

    2. For each of the following matrices, verify that \(A\) is Hermitian by showing that \(A = A^*\) ,find a unitary matrix \(U\) such that \(U^{−1}AU\) is a diagonal matrix, and compute \(exp(A)\).
    \[ (a)~ A = \left[ \begin{array}{cc} 4 & 1-i \\ 1+i & 5 \end{array} \right] ~~ (b)~A = \left[ \begin{array}{cc} 3 & -i \\ i & 3 \end{array} \right] ~~ (c)~A = \left[ \begin{array}{cc} 6 & 2+2i \\ 2-2i & 4 \end{array} \right]\]
    \[ (d)~A = \left[ \begin{array}{cc} 0 & 3+i \\ 3-i & -3 \end{array} \right] ~~ (e)~ A = \left[ \begin{array}{ccc} 5 & 0 & 0 \\ 0 & -1 & -1+i \\ 0 & -1-i & 0 \end{array} \right] ~~ (f)~ A = \left[ \begin{array}{ccc} 2 & \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & 2 & 0 \\ \frac{i}{\sqrt{2}} & 0 & 2 \end{array} \right] \]

    3. For each of the following matrices, either find a matrix \(P\) (not necessarily unitary) such that \(P^{−1}AP\) is a diagonal matrix, or show why no such matrix exists.

    \[ (a)~ A = \left[ \begin{array}{ccc} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{array} \right] ~~ (b)~A = \left[ \begin{array}{ccc} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{array} \right] ~~ (c)~A = \left[ \begin{array}{ccc} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{array} \right]\]

    \[ (d)~ A = \left[ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{array} \right] ~~ (e)~A = \left[ \begin{array}{ccc} -i & 1 & 1 \\ -i & 1 & 1 \\ -i & 1 & 1 \end{array} \right] ~~ (f)~A = \left[ \begin{array}{ccc} 0 & 0 & i \\ 4 & 0 & i \\ 0 & 0 & i \end{array} \right]\]

    4. Let \(r \in \mathbb{R}\) and let \(T \in \cal{L}(\mathbb{C}^2)\) be the linear map with canonical matrix

    \[ T = \left( \begin{array}{cc} 1 & -1 \\ -1 & r \end{array} \right) \]
    (a) Find the eigenvalues of \(T\) .
    (b) Find an orthonormal basis of \( \mathbb{C}^2\) consisting of eigenvectors of \(T\) .
    (c) Find a unitary matrix \(U\) such that \(UT U^*\) is diagonal.

    5. Let \(A\) be the complex matrix given by:
    \[ A = \left[ \begin{array}{ccc} 5 & 0 & 0 \\ 0 & -1 & -1+i \\ 0 & -1-i & 0 \end{array} \right]\]
    (a) Find the eigenvalues of \(A\).
    (b) Find an orthonormal basis of eigenvectors of \(A\).
    (c) Calculate \(|A| = \sqrt{A^*A}\).
    (d) Calculate \(e^A\) .

    6. Let \(θ \in \mathbb{R}\), and let \(T \in \cal{L}(\mathbb{C}^2) \)have canonical matrix
    \[ M(T ) = \left( \begin{array}{cc} 1 & e^{i\theta} \\ e^{-i\theta} & -1 \end{array} \right). \]
    (a) Find the eigenvalues of \(T\) .
    (b) Find an orthonormal basis for \(\mathbb{C}^2\) that consists of eigenvectors for \(T\) .

    Proof-Writing Exercises

    1. Prove or give a counterexample: The product of any two self-adjoint operators on a finite-dimensional vector space is self-adjoint.

    2. Prove or give a counterexample: Every unitary matrix is invertible.

    3. Let \(V\) be a finite-dimensional vector space over \( \mathbb{F}\), and suppose that \(T \in \cal{L}(V)\) satisfies \(T^2 = T\) . Prove that \(T\) is an orthogonal projection if and only if \(T\) is self-adjoint.

    4. Let \(V\) be a finite-dimensional inner product space over \( \mathbb{C}\), and suppose that \(T \in \cal{L}(V)\) has the property that \(T^* = −T \). (We call T a skew Hermitian operator on \(V\).)
    (a) Prove that the operator \(iT \in \cal{L}(V)\) defined by \((iT )(v) = i(T (v))\), for each \(v \in V\) , is Hermitian.
    (b) Prove that the canonical matrix for \(T\) can be unitarily diagonalized.
    (c) Prove that \(T\) has purely imaginary eigenvalues.

    5. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\), and suppose that \(S, T \in \cal{L}(V)\) are positive operators on \(V\) . Prove that \(S + T\) is also a positive operator on \(T\) .

    6. Let \(V\) be a finite-dimensional vector space over \(\mathbb{F}\), and let \(T \in \cal{L}(V)\)be any operator on \(V\) . Prove that \(T\) is invertible if and only if 0 is not a singular value of \(T\) .


    This page titled 11.E: Exercises for Chapter 11 is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.