# 3.1.1: Exercises 3.1

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

In Exercises $$\PageIndex{1}$$ - $$\PageIndex{24}$$, a matrix $$A$$ is given. Find $$A^{T}$$; make note if $$A$$ is upper/lower triangular, diagonal, symmetric and/or skew symmetric.

##### Exercise $$\PageIndex{1}$$

$$\left[\begin{array}{cc}{-7}&{4}\\{4}&{-6}\end{array}\right]$$

$$A$$ is symmetric. $$\left[\begin{array}{cc}{-7}&{4}\\{4}&{-6}\end{array}\right]$$

##### Exercise $$\PageIndex{2}$$

$$\left[\begin{array}{cc}{3}&{1}\\{-7}&{8}\end{array}\right]$$

$$\left[\begin{array}{cc}{3}&{-7}\\{1}&{8}\end{array}\right]$$

##### Exercise $$\PageIndex{3}$$

$$\left[\begin{array}{cc}{1}&{0}\\{0}&{9}\end{array}\right]$$

$$A$$ is diagonal, as is $$A^{T}$$. $$\left[\begin{array}{cc}{1}&{0}\\{0}&{9}\end{array}\right]$$

##### Exercise $$\PageIndex{4}$$

$$\left[\begin{array}{cc}{13}&{-3}\\{-3}&{1}\end{array}\right]$$

$$A$$ is symmetric. $$\left[\begin{array}{cc}{13}&{-3}\\{-3}&{1}\end{array}\right]$$

##### Exercise $$\PageIndex{5}$$

$$\left[\begin{array}{cc}{-5}&{-9}\\{3}&{1}\\{-10}&{-8}\end{array}\right]$$

$$\left[\begin{array}{ccc}{-5}&{3}&{-10}\\{-9}&{1}&{-8}\end{array}\right]$$

##### Exercise $$\PageIndex{6}$$

$$\left[\begin{array}{cc}{-2}&{10}\\{1}&{-7}\\{9}&{-2}\end{array}\right]$$

$$\left[\begin{array}{ccc}{-2}&{1}&{9}\\{10}&{-7}&{-2}\end{array}\right]$$

##### Exercise $$\PageIndex{7}$$

$$\left[\begin{array}{cccc}{4}&{-7}&{-4}&{-9}\\{-9}&{6}&{3}&{-9}\end{array}\right]$$

$$\left[\begin{array}{cc}{4}&{-9}\\{-7}&{6}\\{-4}&{3}\\{-9}&{-9}\end{array}\right]$$

##### Exercise $$\PageIndex{8}$$

$$\left[\begin{array}{cccc}{3}&{-10}&{0}&{6}\\{-10}&{-2}&{-3}&{1}\end{array}\right]$$

$$\left[\begin{array}{cc}{3}&{-10}\\{-10}&{-2}\\{0}&{-3}\\{6}&{1}\end{array}\right]$$

##### Exercise $$\PageIndex{9}$$

$$\left[\begin{array}{cccc}{-7}&{-8}&{2}&{-3}\end{array}\right]$$

$$\left[\begin{array}{c}{-7}\\{-8}\\{2}\\{-3}\end{array}\right]$$

##### Exercise $$\PageIndex{10}$$

$$\left[\begin{array}{cccc}{-9}&{8}&{2}&{-7}\end{array}\right]$$

$$\left[\begin{array}{c}{-9}\\{8}\\{2}\\{-7}\end{array}\right]$$

##### Exercise $$\PageIndex{11}$$

$$\left[\begin{array}{ccc}{-9}&{4}&{10}\\{6}&{-3}&{-7}\\{-8}&{1}&{-1}\end{array}\right]$$

$$\left[\begin{array}{ccc}{-9}&{6}&{-8}\\{4}&{-3}&{1}\\{10}&{-7}&{-1}\end{array}\right]$$

##### Exercise $$\PageIndex{12}$$

$$\left[\begin{array}{ccc}{4}&{-5}&{2}\\{1}&{5}&{9}\\{9}&{2}&{3}\end{array}\right]$$

$$\left[\begin{array}{ccc}{4}&{1}&{9}\\{-5}&{5}&{2}\\{2}&{9}&{3}\end{array}\right]$$

##### Exercise $$\PageIndex{13}$$

$$\left[\begin{array}{ccc}{4}&{0}&{-2}\\{0}&{2}&{3}\\{-2}&{3}&{6}\end{array}\right]$$

$$A$$ is symmetric. $$\left[\begin{array}{ccc}{4}&{0}&{-2}\\{0}&{2}&{3}\\{-2}&{3}&{6}\end{array}\right]$$

##### Exercise $$\PageIndex{14}$$

$$\left[\begin{array}{ccc}{0}&{3}&{-2}\\{3}&{-4}&{1}\\{-2}&{1}&{0}\end{array}\right]$$

$$A$$ is symmetric. $$\left[\begin{array}{ccc}{0}&{3}&{-2}\\{3}&{-4}&{1}\\{-2}&{1}&{0}\end{array}\right]$$

##### Exercise $$\PageIndex{15}$$

$$\left[\begin{array}{ccc}{2}&{-5}&{-3}\\{5}&{5}&{-6}\\{7}&{-4}&{-10}\end{array}\right]$$

$$\left[\begin{array}{ccc}{2}&{5}&{7}\\{-5}&{5}&{-4}\\{-3}&{-6}&{-10}\end{array}\right]$$

##### Exercise $$\PageIndex{16}$$

$$\left[\begin{array}{ccc}{0}&{-6}&{1}\\{6}&{0}&{4}\\{-1}&{-4}&{0}\end{array}\right]$$

$$A$$ is skew symmetric. $$\left[\begin{array}{ccc}{0}&{-6}&{1}\\{6}&{0}&{4}\\{-1}&{-4}&{0}\end{array}\right]$$

##### Exercise $$\PageIndex{17}$$

$$\left[\begin{array}{ccc}{4}&{2}&{-9}\\{5}&{-4}&{-10}\\{-6}&{6}&{9}\end{array}\right]$$

$$\left[\begin{array}{ccc}{4}&{5}&{-6}\\{2}&{-4}&{6}\\{-9}&{-10}&{9}\end{array}\right]$$

##### Exercise $$\PageIndex{18}$$

$$\left[\begin{array}{ccc}{4}&{0}&{0}\\{-2}&{-7}&{0}\\{4}&{-2}&{5}\end{array}\right]$$

$$A$$ is lower triangular and $$A^{T}$$ is upper triangular; $$\left[\begin{array}{ccc}{4}&{-2}&{4}\\{0}&{-7}&{-2}\\{0}&{0}&{5}\end{array}\right]$$

##### Exercise $$\PageIndex{19}$$

$$\left[\begin{array}{ccc}{-3}&{-4}&{-5}\\{0}&{-3}&{5}\\{0}&{0}&{-3}\end{array}\right]$$

$$A$$ is upper triangular; $$A^{T}$$ is lower triangular. $$\left[\begin{array}{ccc}{-3}&{0}&{0}\\{-4}&{-3}&{0}\\{-5}&{5}&{-3}\end{array}\right]$$

##### Exercise $$\PageIndex{20}$$

$$\left[\begin{array}{cccc}{6}&{-7}&{2}&{6}\\{0}&{-8}&{-1}&{0}\\{0}&{0}&{1}&{-7}\end{array}\right]$$

$$A$$ is upper triangular; $$A^{T}$$ is lower triangular. $$\left[\begin{array}{ccc}{6}&{0}&{0}\\{-7}&{-8}&{0}\\{2}&{-1}&{1}\\{6}&{0}&{-7}\end{array}\right]$$

##### Exercise $$\PageIndex{21}$$

$$\left[\begin{array}{ccc}{1}&{0}&{0}\\{0}&{2}&{0}\\{0}&{0}&{-1}\end{array}\right]$$

$$A$$ is diagonal, as is $$A^{T}$$. $$\left[\begin{array}{ccc}{1}&{0}&{0}\\{0}&{2}&{0}\\{0}&{0}&{-1}\end{array}\right]$$

##### Exercise $$\PageIndex{22}$$

$$\left[\begin{array}{ccc}{6}&{-4}&{-5}\\{-4}&{0}&{2}\\{-5}&{2}&{-2}\end{array}\right]$$

$$A$$ is symmetric. $$\left[\begin{array}{ccc}{6}&{-4}&{-5}\\{-4}&{0}&{2}\\{-5}&{2}&{-2}\end{array}\right]$$

##### Exercise $$\PageIndex{23}$$

$$\left[\begin{array}{ccc}{0}&{1}&{-2}\\{-1}&{0}&{4}\\{2}&{-4}&{0}\end{array}\right]$$

$$A$$ is skew symmetric. $$\left[\begin{array}{ccc}{0}&{-1}&{2}\\{1}&{0}&{-4}\\{-2}&{4}&{0}\end{array}\right]$$

##### Exercise $$\PageIndex{24}$$

$$\left[\begin{array}{ccc}{0}&{0}&{0}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{array}\right]$$

$$A$$ is upper and lower triangular; it is diagonal; it is both symmetric and skew symmetric. It’s got it all. $$\left[\begin{array}{ccc}{0}&{0}&{0}\\{0}&{0}&{0}\\{0}&{0}&{0}\end{array}\right]$$