3.4.1: Exercises 3.4
( \newcommand{\kernel}{\mathrm{null}\,}\)
In Exercises 3.4.1.1 – 3.4.1.14, find the determinant of the given matrix using cofactor expansion along any row or column you choose.
[123−503406]
- Answer
-
84
[−44−400−3−2−2−1]
- Answer
-
48
[−411000−1−2−5]
- Answer
-
0
[0−31005−410]
- Answer
-
60
[−2−35520−100]
- Answer
-
10
[−2−202−5−3−510]
- Answer
-
−36
[−30−5−2−33−101]
- Answer
-
24
[04−431−3−3−40]
- Answer
-
72
[5−50124−1−15004−1−205]
- Answer
-
175
[−133400004−5−200020]
- Answer
-
0
[−5−50−200501331−4−2−1−5]
- Answer
-
−200
[−10−253−51−2−5−2−1−3−1000]
- Answer
-
57
[4051010315220221000044253]
- Answer
-
34
[2111141202001001320350504]
- Answer
-
29
In Exercises 3.4.1.15 - 3.4.1.18, a matrix M and det(M) are given. Matrices A, B and C are formed by performing operations on M. Determine the determinants of A, B and C using Theorems 3.4.2 and 3.4.3, and indicate the operations used to form A, B and C.
M=[035310−2−4−1],det(M)=−41.
- A=[035−2−4−1310]
- B=[0353108164]
- C=[345310−2−4−1]
- Answer
-
- det(A)=41;R2↔R3
- det(B)=164;−4R3→R3
- det(C)=−41;R2+R1→R1
M=[978137633],det(M)=45.
- A=[181416137633]
- B=[978137967383]
- C=[916733873]
- Answer
-
- det(A)=90;2R1→R1
- det(B)=45;10R1+R3→R3
- det(C)=45;C=AT
M=[515402004],det(M)=−16.
- A=[004515402]
- B=[−5−1−5−40−2004]
- C=[1531512060012]
- Answer
-
- det(A)=−16;R1↔R2 then R1↔R3
- det(B)=−16;−R1→R1 and −R2→R2
- det(C)=−432;C=3∗M
M=[540793139],det(M)=120.
- A=[139793540]
- B=[540141863927]
- C=[−5−40−7−9−3−1−3−9]
- Answer
-
- det(A)=−120;R1↔R2 then R1↔R3 then R2↔R3
- det(B)=720;2R2→R2 and 3R3→R3
- det(C)=−120;C=−M
In Exercises 3.4.1.19 - 3.4.1.22, matrices A and B are given. Verify part 3 of Theorem 3.4.3 by computing det(A), det(B) and det(AB).
A=[2012],B=[0−413]
- Answer
-
det(A)=4,det(B)=4,det(AB)=16
A=[3−141],B=[−4−1−53]
- Answer
-
det(A)=7,det(B)=−17,det(AB)=−119
A=[−445−2],B=[−3−45−3]
- Answer
-
det(A)=−12,det(B)=29,det(AB)=−348
A=[−3−12−3],B=[004−4]
- Answer
-
det(A)=11,det(B)=0,det(AB)=0
In Exercises 3.4.1.23 - 3.4.1.30, find the determinant of the given matrix using Key Idea 3.4.2.
[323−61−10−8−9−9]
- Answer
-
−59
[8−9−2−99−75−19]
- Answer
-
250
[−43−4−4−533−45]
- Answer
-
15
[1−21554400]
- Answer
-
−52
[1−41030122]
- Answer
-
3
[3−10−30−40−1−4]
- Answer
-
0
[−50−424−1−50−4]
- Answer
-
0
[100010−111]
- Answer
-
1