3.4.1: Exercises 3.4
- Page ID
- 70411
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Exercises \(\PageIndex{1}\) – \(\PageIndex{14}\), find the determinant of the given matrix using cofactor expansion along any row or column you choose.
\(\left[\begin{array}{ccc}{1}&{2}&{3}\\{-5}&{0}&{3}\\{4}&{0}&{6}\end{array}\right]\)
- Answer
-
\(84\)
\(\left[\begin{array}{ccc}{-4}&{4}&{-4}\\{0}&{0}&{-3}\\{-2}&{-2}&{-1}\end{array}\right]\)
- Answer
-
\(48\)
\(\left[\begin{array}{ccc}{-4}&{1}&{1}\\{0}&{0}&{0}\\{-1}&{-2}&{-5}\end{array}\right]\)
- Answer
-
\(0\)
\(\left[\begin{array}{ccc}{0}&{-3}&{1}\\{0}&{0}&{5}\\{-4}&{1}&{0}\end{array}\right]\)
- Answer
-
\(60\)
\(\left[\begin{array}{ccc}{-2}&{-3}&{5}\\{5}&{2}&{0}\\{-1}&{0}&{0}\end{array}\right]\)
- Answer
-
\(10\)
\(\left[\begin{array}{ccc}{-2}&{-2}&{0}\\{2}&{-5}&{-3}\\{-5}&{1}&{0}\end{array}\right]\)
- Answer
-
\(-36\)
\(\left[\begin{array}{ccc}{-3}&{0}&{-5}\\{-2}&{-3}&{3}\\{-1}&{0}&{1}\end{array}\right]\)
- Answer
-
\(24\)
\(\left[\begin{array}{ccc}{0}&{4}&{-4}\\{3}&{1}&{-3}\\{-3}&{-4}&{0}\end{array}\right]\)
- Answer
-
\(72\)
\(\left[\begin{array}{cccc}{5}&{-5}&{0}&{1}\\{2}&{4}&{-1}&{-1}\\{5}&{0}&{0}&{4}\\{-1}&{-2}&{0}&{5}\end{array}\right]\)
- Answer
-
\(175\)
\(\left[\begin{array}{cccc}{-1}&{3}&{3}&{4}\\{0}&{0}&{0}&{0}\\{4}&{-5}&{-2}&{0}\\{0}&{0}&{2}&{0}\end{array}\right]\)
- Answer
-
\(0\)
\(\left[\begin{array}{cccc}{-5}&{-5}&{0}&{-2}\\{0}&{0}&{5}&{0}\\{1}&{3}&{3}&{1}\\{-4}&{-2}&{-1}&{-5}\end{array}\right]\)
- Answer
-
\(-200\)
\(\left[\begin{array}{cccc}{-1}&{0}&{-2}&{5}\\{3}&{-5}&{1}&{-2}\\{-5}&{-2}&{-1}&{-3}\\{-1}&{0}&{0}&{0}\end{array}\right]\)
- Answer
-
\(57\)
\(\left[\begin{array}{ccccc}{4}&{0}&{5}&{1}&{0}\\{1}&{0}&{3}&{1}&{5}\\{2}&{2}&{0}&{2}&{2}\\{1}&{0}&{0}&{0}&{0}\\{4}&{4}&{2}&{5}&{3}\end{array}\right]\)
- Answer
-
\(34\)
\(\left[\begin{array}{ccccc}{2}&{1}&{1}&{1}&{1}\\{4}&{1}&{2}&{0}&{2}\\{0}&{0}&{1}&{0}&{0}\\{1}&{3}&{2}&{0}&{3}\\{5}&{0}&{5}&{0}&{4}\end{array}\right]\)
- Answer
-
\(29\)
In Exercises \(\PageIndex{15}\) - \(\PageIndex{18}\), a matrix \(M\) and \(\text{det}(M)\) are given. Matrices \(A\), \(B\) and \(C\) are formed by performing operations on \(M\). Determine the determinants of \(A\), \(B\) and \(C\) using Theorems 3.4.2 and 3.4.3, and indicate the operations used to form \(A\), \(B\) and \(C\).
\(M=\left[\begin{array}{ccc}{0}&{3}&{5}\\{3}&{1}&{0}\\{-2}&{-4}&{-1}\end{array}\right],\quad \text{det}(M)=-41.\)
- \(A=\left[\begin{array}{ccc}{0}&{3}&{5}\\{-2}&{-4}&{-1}\\{3}&{1}&{0}\end{array}\right]\)
- \(B=\left[\begin{array}{ccc}{0}&{3}&{5}\\{3}&{1}&{0}\\{8}&{16}&{4}\end{array}\right]\)
- \(C=\left[\begin{array}{ccc}{3}&{4}&{5}\\{3}&{1}&{0}\\{-2}&{-4}&{-1}\end{array}\right]\)
- Answer
-
- \(\text{det}(A)=41;\:R_{2}\leftrightarrow R_{3}\)
- \(\text{det}(B)=164;\:-4R_{3}\to R_{3}\)
- \(\text{det}(C)=-41;\:R_{2}+R_{1}\to R_{1}\)
\(M=\left[\begin{array}{ccc}{9}&{7}&{8}\\{1}&{3}&{7}\\{6}&{3}&{3}\end{array}\right],\quad \text{det}(M)=45.\)
- \(A=\left[\begin{array}{ccc}{18}&{14}&{16}\\{1}&{3}&{7}\\{6}&{3}&{3}\end{array}\right]\)
- \(B=\left[\begin{array}{ccc}{9}&{7}&{8}\\{1}&{3}&{7}\\{96}&{73}&{83}\end{array}\right]\)
- \(C=\left[\begin{array}{ccc}{9}&{1}&{6}\\{7}&{3}&{3}\\{8}&{7}&{3}\end{array}\right]\)
- Answer
-
- \(\text{det}(A)=90;\:2R_{1}\to R_{1}\)
- \(\text{det}(B)=45;\:10R_{1}+R_{3}\to R_{3}\)
- \(\text{det}(C)=45;\:C=A^{T}\)
\(M=\left[\begin{array}{ccc}{5}&{1}&{5}\\{4}&{0}&{2}\\{0}&{0}&{4}\end{array}\right],\quad \text{det}(M)=-16.\)
- \(A=\left[\begin{array}{ccc}{0}&{0}&{4}\\{5}&{1}&{5}\\{4}&{0}&{2}\end{array}\right]\)
- \(B=\left[\begin{array}{ccc}{-5}&{-1}&{-5}\\{-4}&{0}&{-2}\\{0}&{0}&{4}\end{array}\right]\)
- \(C=\left[\begin{array}{ccc}{15}&{3}&{15}\\{12}&{0}&{6}\\{0}&{0}&{12}\end{array}\right]\)
- Answer
-
- \(\text{det}(A)=-16;\:R_{1}\leftrightarrow R_{2}\) then \(R_{1}\leftrightarrow R_{3}\)
- \(\text{det}(B)=-16;\: -R_{1}\to R_{1}\) and \(-R_{2}\to R_{2}\)
- \(\text{det}(C)=-432;\:C=3 * M\)
\(M=\left[\begin{array}{ccc}{5}&{4}&{0}\\{7}&{9}&{3}\\{1}&{3}&{9}\end{array}\right],\quad \text{det}(M)=120.\)
- \(A=\left[\begin{array}{ccc}{1}&{3}&{9}\\{7}&{9}&{3}\\{5}&{4}&{0}\end{array}\right]\)
- \(B=\left[\begin{array}{ccc}{5}&{4}&{0}\\{14}&{18}&{6}\\{3}&{9}&{27}\end{array}\right]\)
- \(C=\left[\begin{array}{ccc}{-5}&{-4}&{0}\\{-7}&{-9}&{-3}\\{-1}&{-3}&{-9}\end{array}\right]\)
- Answer
-
- \(\text{det}(A)=-120;\: R_{1}\leftrightarrow R_{2}\) then \(R_{1}\leftrightarrow R_{3}\) then \(R_{2}\leftrightarrow R_{3}\)
- \(\text{det}(B)=720;\:2R_{2}\to R_{2}\) and \(3R_{3}\to R_{3}\)
- \(\text{det}(C)=-120;\: C=-M\)
In Exercises \(\PageIndex{19}\) - \(\PageIndex{22}\), matrices \(A\) and \(B\) are given. Verify part 3 of Theorem 3.4.3 by computing \(\text{det}(A)\), \(\text{det}(B)\) and \(\text{det}(AB)\).
\(A=\left[\begin{array}{cc}{2}&{0}\\{1}&{2}\end{array}\right],\quad B=\left[\begin{array}{cc}{0}&{-4}\\{1}&{3}\end{array}\right]\)
- Answer
-
\(\text{det}(A)=4,\:\text{det}(B)=4,\:\text{det}(AB)=16\)
\(A=\left[\begin{array}{cc}{3}&{-1}\\{4}&{1}\end{array}\right],\quad B=\left[\begin{array}{cc}{-4}&{-1}\\{-5}&{3}\end{array}\right]\)
- Answer
-
\(\text{det}(A)=7,\:\text{det}(B)=-17,\:\text{det}(AB)=-119\)
\(A=\left[\begin{array}{cc}{-4}&{4}\\{5}&{-2}\end{array}\right],\quad B=\left[\begin{array}{cc}{-3}&{-4}\\{5}&{-3}\end{array}\right]\)
- Answer
-
\(\text{det}(A)=-12,\:\text{det}(B)=29,\:\text{det}(AB)=-348\)
\(A=\left[\begin{array}{cc}{-3}&{-1}\\{2}&{-3}\end{array}\right],\quad B=\left[\begin{array}{cc}{0}&{0}\\{4}&{-4}\end{array}\right]\)
- Answer
-
\(\text{det}(A)=11,\:\text{det}(B)=0,\:\text{det}(AB)=0\)
In Exercises \(\PageIndex{23}\) - \(\PageIndex{30}\), find the determinant of the given matrix using Key Idea 3.4.2.
\(\left[\begin{array}{ccc}{3}&{2}&{3}\\{-6}&{1}&{-10}\\{-8}&{-9}&{-9}\end{array}\right]\)
- Answer
-
\(-59\)
\(\left[\begin{array}{ccc}{8}&{-9}&{-2}\\{-9}&{9}&{-7}\\{5}&{-1}&{9}\end{array}\right]\)
- Answer
-
\(250\)
\(\left[\begin{array}{ccc}{-4}&{3}&{-4}\\{-4}&{-5}&{3}\\{3}&{-4}&{5}\end{array}\right]\)
- Answer
-
\(15\)
\(\left[\begin{array}{ccc}{1}&{-2}&{1}\\{5}&{5}&{4}\\{4}&{0}&{0}\end{array}\right]\)
- Answer
-
\(-52\)
\(\left[\begin{array}{ccc}{1}&{-4}&{1}\\{0}&{3}&{0}\\{1}&{2}&{2}\end{array}\right]\)
- Answer
-
\(3\)
\(\left[\begin{array}{ccc}{3}&{-1}&{0}\\{-3}&{0}&{-4}\\{0}&{-1}&{-4}\end{array}\right]\)
- Answer
-
\(0\)
\(\left[\begin{array}{ccc}{-5}&{0}&{-4}\\{2}&{4}&{-1}\\{-5}&{0}&{-4}\end{array}\right]\)
- Answer
-
\(0\)
\(\left[\begin{array}{ccc}{1}&{0}&{0}\\{0}&{1}&{0}\\{-1}&{1}&{1}\end{array}\right]\)
- Answer
-
\(1\)