Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.4.1: Exercises 3.4

( \newcommand{\kernel}{\mathrm{null}\,}\)

In Exercises 3.4.1.13.4.1.14, find the determinant of the given matrix using cofactor expansion along any row or column you choose.

Exercise 3.4.1.1

[123503406]

Answer

84

Exercise 3.4.1.2

[444003221]

Answer

48

Exercise 3.4.1.3

[411000125]

Answer

0

Exercise 3.4.1.4

[031005410]

Answer

60

Exercise 3.4.1.5

[235520100]

Answer

10

Exercise 3.4.1.6

[220253510]

Answer

36

Exercise 3.4.1.7

[305233101]

Answer

24

Exercise 3.4.1.8

[044313340]

Answer

72

Exercise 3.4.1.9

[5501241150041205]

Answer

175

Exercise 3.4.1.10

[1334000045200020]

Answer

0

Exercise 3.4.1.11

[5502005013314215]

Answer

200

Exercise 3.4.1.12

[1025351252131000]

Answer

57

Exercise 3.4.1.13

[4051010315220221000044253]

Answer

34

Exercise 3.4.1.14

[2111141202001001320350504]

Answer

29

In Exercises 3.4.1.15 - 3.4.1.18, a matrix M and det(M) are given. Matrices A, B and C are formed by performing operations on M. Determine the determinants of A, B and C using Theorems 3.4.2 and 3.4.3, and indicate the operations used to form A, B and C.

Exercise 3.4.1.15

M=[035310241],det(M)=41.

  1. A=[035241310]
  2. B=[0353108164]
  3. C=[345310241]
Answer
  1. det(A)=41;R2R3
  2. det(B)=164;4R3R3
  3. det(C)=41;R2+R1R1
Exercise 3.4.1.16

M=[978137633],det(M)=45.

  1. A=[181416137633]
  2. B=[978137967383]
  3. C=[916733873]
Answer
  1. det(A)=90;2R1R1
  2. det(B)=45;10R1+R3R3
  3. det(C)=45;C=AT
Exercise 3.4.1.17

M=[515402004],det(M)=16.

  1. A=[004515402]
  2. B=[515402004]
  3. C=[1531512060012]
Answer
  1. det(A)=16;R1R2 then R1R3
  2. det(B)=16;R1R1 and R2R2
  3. det(C)=432;C=3M
Exercise 3.4.1.18

M=[540793139],det(M)=120.

  1. A=[139793540]
  2. B=[540141863927]
  3. C=[540793139]
Answer
  1. det(A)=120;R1R2 then R1R3 then R2R3
  2. det(B)=720;2R2R2 and 3R3R3
  3. det(C)=120;C=M

In Exercises 3.4.1.19 - 3.4.1.22, matrices A and B are given. Verify part 3 of Theorem 3.4.3 by computing det(A), det(B) and det(AB).

Exercise 3.4.1.19

A=[2012],B=[0413]

Answer

det(A)=4,det(B)=4,det(AB)=16

Exercise 3.4.1.20

A=[3141],B=[4153]

Answer

det(A)=7,det(B)=17,det(AB)=119

Exercise 3.4.1.21

A=[4452],B=[3453]

Answer

det(A)=12,det(B)=29,det(AB)=348

Exercise 3.4.1.22

A=[3123],B=[0044]

Answer

det(A)=11,det(B)=0,det(AB)=0

In Exercises 3.4.1.23 - 3.4.1.30, find the determinant of the given matrix using Key Idea 3.4.2.

Exercise 3.4.1.23

[3236110899]

Answer

59

Exercise 3.4.1.24

[892997519]

Answer

250

Exercise 3.4.1.25

[434453345]

Answer

15

Exercise 3.4.1.26

[121554400]

Answer

52

Exercise 3.4.1.27

[141030122]

Answer

3

Exercise 3.4.1.28

[310304014]

Answer

0

Exercise 3.4.1.29

[504241504]

Answer

0

Exercise 3.4.1.30

[100010111]

Answer

1


This page titled 3.4.1: Exercises 3.4 is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Gregory Hartman et al..

  • Was this article helpful?

Support Center

How can we help?