# 3.4.1: Exercises 3.4

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

In Exercises $$\PageIndex{1}$$ – $$\PageIndex{14}$$, find the determinant of the given matrix using cofactor expansion along any row or column you choose.

##### Exercise $$\PageIndex{1}$$

$$\left[\begin{array}{ccc}{1}&{2}&{3}\\{-5}&{0}&{3}\\{4}&{0}&{6}\end{array}\right]$$

$$84$$

##### Exercise $$\PageIndex{2}$$

$$\left[\begin{array}{ccc}{-4}&{4}&{-4}\\{0}&{0}&{-3}\\{-2}&{-2}&{-1}\end{array}\right]$$

$$48$$

##### Exercise $$\PageIndex{3}$$

$$\left[\begin{array}{ccc}{-4}&{1}&{1}\\{0}&{0}&{0}\\{-1}&{-2}&{-5}\end{array}\right]$$

$$0$$

##### Exercise $$\PageIndex{4}$$

$$\left[\begin{array}{ccc}{0}&{-3}&{1}\\{0}&{0}&{5}\\{-4}&{1}&{0}\end{array}\right]$$

$$60$$

##### Exercise $$\PageIndex{5}$$

$$\left[\begin{array}{ccc}{-2}&{-3}&{5}\\{5}&{2}&{0}\\{-1}&{0}&{0}\end{array}\right]$$

$$10$$

##### Exercise $$\PageIndex{6}$$

$$\left[\begin{array}{ccc}{-2}&{-2}&{0}\\{2}&{-5}&{-3}\\{-5}&{1}&{0}\end{array}\right]$$

$$-36$$

##### Exercise $$\PageIndex{7}$$

$$\left[\begin{array}{ccc}{-3}&{0}&{-5}\\{-2}&{-3}&{3}\\{-1}&{0}&{1}\end{array}\right]$$

$$24$$

##### Exercise $$\PageIndex{8}$$

$$\left[\begin{array}{ccc}{0}&{4}&{-4}\\{3}&{1}&{-3}\\{-3}&{-4}&{0}\end{array}\right]$$

$$72$$

##### Exercise $$\PageIndex{9}$$

$$\left[\begin{array}{cccc}{5}&{-5}&{0}&{1}\\{2}&{4}&{-1}&{-1}\\{5}&{0}&{0}&{4}\\{-1}&{-2}&{0}&{5}\end{array}\right]$$

$$175$$

##### Exercise $$\PageIndex{10}$$

$$\left[\begin{array}{cccc}{-1}&{3}&{3}&{4}\\{0}&{0}&{0}&{0}\\{4}&{-5}&{-2}&{0}\\{0}&{0}&{2}&{0}\end{array}\right]$$

$$0$$

##### Exercise $$\PageIndex{11}$$

$$\left[\begin{array}{cccc}{-5}&{-5}&{0}&{-2}\\{0}&{0}&{5}&{0}\\{1}&{3}&{3}&{1}\\{-4}&{-2}&{-1}&{-5}\end{array}\right]$$

$$-200$$

##### Exercise $$\PageIndex{12}$$

$$\left[\begin{array}{cccc}{-1}&{0}&{-2}&{5}\\{3}&{-5}&{1}&{-2}\\{-5}&{-2}&{-1}&{-3}\\{-1}&{0}&{0}&{0}\end{array}\right]$$

$$57$$

##### Exercise $$\PageIndex{13}$$

$$\left[\begin{array}{ccccc}{4}&{0}&{5}&{1}&{0}\\{1}&{0}&{3}&{1}&{5}\\{2}&{2}&{0}&{2}&{2}\\{1}&{0}&{0}&{0}&{0}\\{4}&{4}&{2}&{5}&{3}\end{array}\right]$$

$$34$$

##### Exercise $$\PageIndex{14}$$

$$\left[\begin{array}{ccccc}{2}&{1}&{1}&{1}&{1}\\{4}&{1}&{2}&{0}&{2}\\{0}&{0}&{1}&{0}&{0}\\{1}&{3}&{2}&{0}&{3}\\{5}&{0}&{5}&{0}&{4}\end{array}\right]$$

$$29$$

In Exercises $$\PageIndex{15}$$ - $$\PageIndex{18}$$, a matrix $$M$$ and $$\text{det}(M)$$ are given. Matrices $$A$$, $$B$$ and $$C$$ are formed by performing operations on $$M$$. Determine the determinants of $$A$$, $$B$$ and $$C$$ using Theorems 3.4.2 and 3.4.3, and indicate the operations used to form $$A$$, $$B$$ and $$C$$.

##### Exercise $$\PageIndex{15}$$

$$M=\left[\begin{array}{ccc}{0}&{3}&{5}\\{3}&{1}&{0}\\{-2}&{-4}&{-1}\end{array}\right],\quad \text{det}(M)=-41.$$

1. $$A=\left[\begin{array}{ccc}{0}&{3}&{5}\\{-2}&{-4}&{-1}\\{3}&{1}&{0}\end{array}\right]$$
2. $$B=\left[\begin{array}{ccc}{0}&{3}&{5}\\{3}&{1}&{0}\\{8}&{16}&{4}\end{array}\right]$$
3. $$C=\left[\begin{array}{ccc}{3}&{4}&{5}\\{3}&{1}&{0}\\{-2}&{-4}&{-1}\end{array}\right]$$
1. $$\text{det}(A)=41;\:R_{2}\leftrightarrow R_{3}$$
2. $$\text{det}(B)=164;\:-4R_{3}\to R_{3}$$
3. $$\text{det}(C)=-41;\:R_{2}+R_{1}\to R_{1}$$
##### Exercise $$\PageIndex{16}$$

$$M=\left[\begin{array}{ccc}{9}&{7}&{8}\\{1}&{3}&{7}\\{6}&{3}&{3}\end{array}\right],\quad \text{det}(M)=45.$$

1. $$A=\left[\begin{array}{ccc}{18}&{14}&{16}\\{1}&{3}&{7}\\{6}&{3}&{3}\end{array}\right]$$
2. $$B=\left[\begin{array}{ccc}{9}&{7}&{8}\\{1}&{3}&{7}\\{96}&{73}&{83}\end{array}\right]$$
3. $$C=\left[\begin{array}{ccc}{9}&{1}&{6}\\{7}&{3}&{3}\\{8}&{7}&{3}\end{array}\right]$$
1. $$\text{det}(A)=90;\:2R_{1}\to R_{1}$$
2. $$\text{det}(B)=45;\:10R_{1}+R_{3}\to R_{3}$$
3. $$\text{det}(C)=45;\:C=A^{T}$$
##### Exercise $$\PageIndex{17}$$

$$M=\left[\begin{array}{ccc}{5}&{1}&{5}\\{4}&{0}&{2}\\{0}&{0}&{4}\end{array}\right],\quad \text{det}(M)=-16.$$

1. $$A=\left[\begin{array}{ccc}{0}&{0}&{4}\\{5}&{1}&{5}\\{4}&{0}&{2}\end{array}\right]$$
2. $$B=\left[\begin{array}{ccc}{-5}&{-1}&{-5}\\{-4}&{0}&{-2}\\{0}&{0}&{4}\end{array}\right]$$
3. $$C=\left[\begin{array}{ccc}{15}&{3}&{15}\\{12}&{0}&{6}\\{0}&{0}&{12}\end{array}\right]$$
1. $$\text{det}(A)=-16;\:R_{1}\leftrightarrow R_{2}$$ then $$R_{1}\leftrightarrow R_{3}$$
2. $$\text{det}(B)=-16;\: -R_{1}\to R_{1}$$ and $$-R_{2}\to R_{2}$$
3. $$\text{det}(C)=-432;\:C=3 * M$$
##### Exercise $$\PageIndex{18}$$

$$M=\left[\begin{array}{ccc}{5}&{4}&{0}\\{7}&{9}&{3}\\{1}&{3}&{9}\end{array}\right],\quad \text{det}(M)=120.$$

1. $$A=\left[\begin{array}{ccc}{1}&{3}&{9}\\{7}&{9}&{3}\\{5}&{4}&{0}\end{array}\right]$$
2. $$B=\left[\begin{array}{ccc}{5}&{4}&{0}\\{14}&{18}&{6}\\{3}&{9}&{27}\end{array}\right]$$
3. $$C=\left[\begin{array}{ccc}{-5}&{-4}&{0}\\{-7}&{-9}&{-3}\\{-1}&{-3}&{-9}\end{array}\right]$$
1. $$\text{det}(A)=-120;\: R_{1}\leftrightarrow R_{2}$$ then $$R_{1}\leftrightarrow R_{3}$$ then $$R_{2}\leftrightarrow R_{3}$$
2. $$\text{det}(B)=720;\:2R_{2}\to R_{2}$$ and $$3R_{3}\to R_{3}$$
3. $$\text{det}(C)=-120;\: C=-M$$

In Exercises $$\PageIndex{19}$$ - $$\PageIndex{22}$$, matrices $$A$$ and $$B$$ are given. Verify part 3 of Theorem 3.4.3 by computing $$\text{det}(A)$$, $$\text{det}(B)$$ and $$\text{det}(AB)$$.

##### Exercise $$\PageIndex{19}$$

$$A=\left[\begin{array}{cc}{2}&{0}\\{1}&{2}\end{array}\right],\quad B=\left[\begin{array}{cc}{0}&{-4}\\{1}&{3}\end{array}\right]$$

$$\text{det}(A)=4,\:\text{det}(B)=4,\:\text{det}(AB)=16$$

##### Exercise $$\PageIndex{20}$$

$$A=\left[\begin{array}{cc}{3}&{-1}\\{4}&{1}\end{array}\right],\quad B=\left[\begin{array}{cc}{-4}&{-1}\\{-5}&{3}\end{array}\right]$$

$$\text{det}(A)=7,\:\text{det}(B)=-17,\:\text{det}(AB)=-119$$

##### Exercise $$\PageIndex{21}$$

$$A=\left[\begin{array}{cc}{-4}&{4}\\{5}&{-2}\end{array}\right],\quad B=\left[\begin{array}{cc}{-3}&{-4}\\{5}&{-3}\end{array}\right]$$

$$\text{det}(A)=-12,\:\text{det}(B)=29,\:\text{det}(AB)=-348$$

##### Exercise $$\PageIndex{22}$$

$$A=\left[\begin{array}{cc}{-3}&{-1}\\{2}&{-3}\end{array}\right],\quad B=\left[\begin{array}{cc}{0}&{0}\\{4}&{-4}\end{array}\right]$$

$$\text{det}(A)=11,\:\text{det}(B)=0,\:\text{det}(AB)=0$$

In Exercises $$\PageIndex{23}$$ - $$\PageIndex{30}$$, find the determinant of the given matrix using Key Idea 3.4.2.

##### Exercise $$\PageIndex{23}$$

$$\left[\begin{array}{ccc}{3}&{2}&{3}\\{-6}&{1}&{-10}\\{-8}&{-9}&{-9}\end{array}\right]$$

$$-59$$

##### Exercise $$\PageIndex{24}$$

$$\left[\begin{array}{ccc}{8}&{-9}&{-2}\\{-9}&{9}&{-7}\\{5}&{-1}&{9}\end{array}\right]$$

$$250$$

##### Exercise $$\PageIndex{25}$$

$$\left[\begin{array}{ccc}{-4}&{3}&{-4}\\{-4}&{-5}&{3}\\{3}&{-4}&{5}\end{array}\right]$$

$$15$$

##### Exercise $$\PageIndex{26}$$

$$\left[\begin{array}{ccc}{1}&{-2}&{1}\\{5}&{5}&{4}\\{4}&{0}&{0}\end{array}\right]$$

$$-52$$

##### Exercise $$\PageIndex{27}$$

$$\left[\begin{array}{ccc}{1}&{-4}&{1}\\{0}&{3}&{0}\\{1}&{2}&{2}\end{array}\right]$$

$$3$$

##### Exercise $$\PageIndex{28}$$

$$\left[\begin{array}{ccc}{3}&{-1}&{0}\\{-3}&{0}&{-4}\\{0}&{-1}&{-4}\end{array}\right]$$

$$0$$

##### Exercise $$\PageIndex{29}$$

$$\left[\begin{array}{ccc}{-5}&{0}&{-4}\\{2}&{4}&{-1}\\{-5}&{0}&{-4}\end{array}\right]$$

$$0$$

##### Exercise $$\PageIndex{30}$$

$$\left[\begin{array}{ccc}{1}&{0}&{0}\\{0}&{1}&{0}\\{-1}&{1}&{1}\end{array}\right]$$

$$1$$